當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.gmres方法代碼示例

本文整理匯總了Python中scipy.sparse.linalg.gmres方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.gmres方法的具體用法?Python linalg.gmres怎麽用?Python linalg.gmres使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.linalg的用法示例。


在下文中一共展示了linalg.gmres方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def __init__(self, A, M, sigma, ifunc=gmres, tol=0):
        if tol <= 0:
            # when tol=0, ARPACK uses machine tolerance as calculated
            # by LAPACK's _LAMCH function.  We should match this
            tol = 2 * np.finfo(A.dtype).eps
        self.A = A
        self.M = M
        self.sigma = sigma
        self.ifunc = ifunc
        self.tol = tol

        x = np.zeros(A.shape[1])
        if M is None:
            dtype = self.mult_func_M_None(x).dtype
            self.OP = LinearOperator(self.A.shape,
                                     self.mult_func_M_None,
                                     dtype=dtype)
        else:
            dtype = self.mult_func(x).dtype
            self.OP = LinearOperator(self.A.shape,
                                     self.mult_func,
                                     dtype=dtype)
        LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:25,代碼來源:arpack.py

示例2: solve_system

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def solve_system(self,rhs,factor,u0,t):
        """
        Simple linear solver for (I-dtA)u = rhs

        Args:
            rhs: right-hand side for the nonlinear system
            factor: abbrev. for the node-to-node stepsize (or any other factor required)
            u0: initial guess for the iterative solver (not used here so far)
            t: current time (e.g. for time-dependent BCs)

        Returns:
            solution as mesh
        """

        b = rhs.values.flatten()
        # NOTE: A = -M, therefore solve Id + factor*M here
        sol, info =  LA.gmres( self.Id + factor*self.c_s*self.M, b, x0=u0.values.flatten(), tol=1e-13, restart=10, maxiter=20)
        me = mesh(self.nvars)
        me.values = unflatten(sol, 3, self.N[0], self.N[1])

        return me 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:23,代碼來源:ProblemClass.py

示例3: solve_system

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def solve_system(self, rhs, factor, u0, t):
        """
        Simple linear solver for (I-factor*A)u = rhs

        Args:
            rhs (dtype_f): right-hand side for the linear system
            factor (float): abbrev. for the local stepsize (or any other factor required)
            u0 (dtype_u): initial guess for the iterative solver
            t (float): current time (e.g. for time-dependent BCs)

        Returns:
            dtype_u: solution as mesh
        """

        me = self.dtype_u(self.init)

        if self.params.direct_solver:
            me.values = spsolve(self.Id - factor * self.A, rhs.values.flatten())
        else:
            me.values = gmres(self.Id - factor * self.A, rhs.values.flatten(), x0=u0.values.flatten(),
                              tol=self.params.lintol, maxiter=self.params.liniter)[0]
        me.values = me.values.reshape(self.params.nvars)
        return me 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:25,代碼來源:HeatEquation_ND_FD_forced_periodic.py

示例4: __init__

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def __init__(self, M, ifunc=gmres, tol=0):
        if tol <= 0:
            # when tol=0, ARPACK uses machine tolerance as calculated
            # by LAPACK's _LAMCH function.  We should match this
            tol = 2 * np.finfo(M.dtype).eps
        self.M = M
        self.ifunc = ifunc
        self.tol = tol
        if hasattr(M, 'dtype'):
            self.dtype = M.dtype
        else:
            x = np.zeros(M.shape[1])
            self.dtype = (M * x).dtype
        self.shape = M.shape 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:arpack.py

示例5: SetSolver

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def SetSolver(self,linear_solver="direct", linear_solver_type="umfpack",
        apply_preconditioner=False, preconditioner="amg_smoothed_aggregation",
        iterative_solver_tolerance=1.0e-12, reduce_matrix_bandwidth=False,
        geometric_discretisation=None):
        """

            input:
                linear_solver:          [str] type of solver either "direct",
                                        "iterative", "petsc" or "amg"

                linear_solver_type      [str] type of direct or linear solver to
                                        use, for instance "umfpack", "superlu" or
                                        "mumps" for direct solvers, or "cg", "gmres"
                                        etc for iterative solvers or "amg" for algebraic
                                        multigrid solver. See WhichSolvers method for
                                        the complete set of available linear solvers

                preconditioner:         [str] either "smoothed_aggregation",
                                        or "ruge_stuben" or "rootnode" for
                                        a preconditioner based on algebraic multigrid
                                        or "ilu" for scipy's spilu linear
                                        operator

                geometric_discretisation:
                                        [str] type of geometric discretisation used, for
                                        instance for FEM discretisations this would correspond
                                        to "tri", "quad", "tet", "hex" etc

        """

        self.solver_type = linear_solver
        self.solver_subtype = "umfpack"
        self.iterative_solver_tolerance = iterative_solver_tolerance
        self.apply_preconditioner = apply_preconditioner
        self.requires_cuthill_mckee = reduce_matrix_bandwidth
        self.geometric_discretisation = geometric_discretisation 
開發者ID:romeric,項目名稱:florence,代碼行數:38,代碼來源:LinearSolver.py

示例6: WhichLinearSolvers

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def WhichLinearSolvers(self):
        return {"direct":["superlu", "umfpack", "mumps", "pardiso"],
                "iterative":["cg", "bicg", "cgstab", "bicgstab", "gmres", "lgmres"],
                "amg":["cg", "bicg", "cgstab", "bicgstab", "gmres", "lgmres"],
                "petsc":["cg", "bicgstab", "gmres"]} 
開發者ID:romeric,項目名稱:florence,代碼行數:7,代碼來源:LinearSolver.py

示例7: gmres_loose

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def gmres_loose(A, b, tol):
    """
    gmres with looser termination condition.
    """
    b = np.asarray(b)
    min_tol = 1000 * np.sqrt(b.size) * np.finfo(b.dtype).eps
    return gmres(A, b, tol=max(tol, min_tol), atol=0) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:arpack.py

示例8: solve_system

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def solve_system(self, rhs, factor, u0, t):
        """
        Simple linear solver for (I-dtA)u = rhs using GMRES

        Args:
            rhs (dtype_f): right-hand side for the nonlinear system
            factor (float): abbrev. for the node-to-node stepsize (or any other factor required)
            u0 (dtype_u): initial guess for the iterative solver (not used here so far)
            t (float): current time (e.g. for time-dependent BCs)

        Returns:
            dtype_u: solution as mesh
        """

        b = rhs.values.flatten()
        cb = Callback()

        sol, info = gmres(self.Id - factor * self.M, b, x0=u0.values.flatten(), tol=self.params.gmres_tol_limit,
                          restart=self.params.gmres_restart, maxiter=self.params.gmres_maxiter, callback=cb)
        # If this is a dummy call with factor==0.0, do not log because it should not be counted as a solver call
        if factor != 0.0:
            self.gmres_logger.add(cb.getcounter())
        me = self.dtype_u(self.init)
        me.values = unflatten(sol, 4, self.N[0], self.N[1])

        return me 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:28,代碼來源:Boussinesq_2D_FD_imex.py

示例9: f_fast_solve

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def f_fast_solve(self, rhs, alpha, u0):
        cb = Callback()
        sol, info = gmres(self.problem.Id - alpha * self.problem.M, rhs, x0=u0,
                          tol=self.problem.params.gmres_tol_limit, restart=self.problem.params.gmres_restart,
                          maxiter=self.problem.params.gmres_maxiter, callback=cb)
        if alpha != 0.0:
            self.logger.add(cb.getcounter())
        return sol


#
# Trapezoidal rule
# 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:15,代碼來源:standard_integrators.py

示例10: f_solve

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def f_solve(self, b, alpha, u0):
        cb = Callback()
        sol, info = gmres(self.problem.Id - alpha * (self.problem.D_upwind + self.problem.M), b, x0=u0,
                          tol=self.problem.params.gmres_tol_limit, restart=self.problem.params.gmres_restart,
                          maxiter=self.problem.params.gmres_maxiter, callback=cb)
        if alpha != 0.0:
            self.logger.add(cb.getcounter())
        return sol


#
#  Split-Explicit method
# 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:15,代碼來源:standard_integrators.py

示例11: __init__

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def __init__(self,
               A,
               drop_tol=0.005,
               fill_factor=2.0,
               normalize_inplace=False):
    # the spilu and gmres functions are most efficient with csc sparse. If the
    # matrix is already csc then this will do nothing
    A = sp.csc_matrix(A)
    n = row_norms(A)
    if normalize_inplace:
      divide_rows(A, n, inplace=True)
    else:
      A = divide_rows(A, n, inplace=False).tocsc()

    LOGGER.debug(
      'computing the ILU decomposition of a %s by %s sparse matrix with %s '
      'nonzeros ' % (A.shape + (A.nnz,)))
    ilu = spla.spilu(
      A,
      drop_rule='basic',
      drop_tol=drop_tol,
      fill_factor=fill_factor)
    LOGGER.debug('done')
    M = spla.LinearOperator(A.shape, ilu.solve)
    self.A = A
    self.M = M
    self.n = n 
開發者ID:treverhines,項目名稱:RBF,代碼行數:29,代碼來源:linalg.py

示例12: solve

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def solve(self, b, tol=1.0e-10):
    '''
    Solve `Ax = b` for `x`

    Parameters
    ----------
    b : (n,) array

    tol : float, optional

    Returns
    -------
    (n,) array

    '''
    # solve the system using GMRES and define the callback function to
    # print info for each iteration
    def callback(res, _itr=[0]):
      l2 = np.linalg.norm(res)
      LOGGER.debug('GMRES error on iteration %s: %s' % (_itr[0], l2))
      _itr[0] += 1

    LOGGER.debug('solving the system with GMRES')
    x, info = spla.gmres(
      self.A,
      b/self.n,
      tol=tol,
      M=self.M,
      callback=callback)
    LOGGER.debug('finished GMRES with info %s' % info)
    return x 
開發者ID:treverhines,項目名稱:RBF,代碼行數:33,代碼來源:linalg.py

示例13: krylovMethod

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def krylovMethod(self,tol=1e-8): 
        """
        We obtain ``pi`` by using the :func:``gmres`` solver for the system of linear equations. 
        It searches in Krylov subspace for a vector with minimal residual. The result is stored in the class attribute ``pi``.   

        Example
        -------
        >>> P = np.array([[0.5,0.5],[0.6,0.4]])
        >>> mc = markovChain(P)
        >>> mc.krylovMethod()
        >>> print(mc.pi) 
        [ 0.54545455  0.45454545]
        
        Parameters
        ----------
        tol : float, optional(default=1e-8)
            Tolerance level for the precision of the end result. A lower tolerance leads to more accurate estimate of ``pi``.        
        
        Remarks
        -------
        For large state spaces, this method may not always give a solution. 
        Code due to http://stackoverflow.com/questions/21308848/
        """            
        P       = self.getIrreducibleTransitionMatrix()
        
        #if P consists of one element, then set self.pi = 1.0
        if P.shape == (1, 1):
            self.pi = np.array([1.0]) 
            return
            
        size    = P.shape[0]
        dP      = P - eye(size)
        #Replace the first equation by the normalizing condition.
        A       = vstack([np.ones(size), dP.T[1:,:]]).tocsr()
        rhs     = np.zeros((size,))
        rhs[0]  = 1
                
        pi, info = gmres(A, rhs, tol=tol)
        if info != 0:
            raise RuntimeError("gmres did not converge")
        self.pi = pi 
開發者ID:gvanderheide,項目名稱:discreteMarkovChain,代碼行數:43,代碼來源:markovChain.py

示例14: gmres_linsolve

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def gmres_linsolve(A, b):
    """

    :param A:
    :param b:
    :return:
    """
    x, info = gmres(A, b)
    return x 
開發者ID:SanPen,項目名稱:GridCal,代碼行數:11,代碼來源:sparse_solve.py

示例15: solve_gmres

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import gmres [as 別名]
def solve_gmres(A, b):
    LOG.debug(f"Solve with GMRES for {A}.")

    if LOG.isEnabledFor(logging.DEBUG):
        counter = Counter()
        x, info = ssl.gmres(A, b, atol=1e-6, callback=counter)
        LOG.debug(f"End of GMRES after {counter.nb_iter} iterations.")

    else:
        x, info = ssl.gmres(A, b, atol=1e-6)

    if info != 0:
        LOG.warning(f"No convergence of the GMRES. Error code: {info}")

    return x 
開發者ID:mancellin,項目名稱:capytaine,代碼行數:17,代碼來源:linear_solvers.py


注:本文中的scipy.sparse.linalg.gmres方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。