本文整理匯總了Python中scipy.sparse.linalg.cg方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.cg方法的具體用法?Python linalg.cg怎麽用?Python linalg.cg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.cg方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def test():
print("\nTesting benchmark functions...")
A, b, x0 = setup_input(n=50, sparsity=7) # dense A
Asp = to_sparse(A)
x1, _ = calc_arrayfire(A, b, x0)
x2, _ = calc_arrayfire(Asp, b, x0)
if af.sum(af.abs(x1 - x2)/x2 > 1e-5):
raise ValueError("arrayfire test failed")
if np:
An = to_numpy(A)
bn = to_numpy(b)
x0n = to_numpy(x0)
x3, _ = calc_numpy(An, bn, x0n)
if not np.allclose(x3, x1.to_list()):
raise ValueError("numpy test failed")
if sp:
Asc = to_scipy_sparse(Asp)
x4, _ = calc_scipy_sparse(Asc, bn, x0n)
if not np.allclose(x4, x1.to_list()):
raise ValueError("scipy.sparse test failed")
x5, _ = calc_scipy_sparse_linalg_cg(Asc, bn, x0n)
if not np.allclose(x5, x1.to_list()):
raise ValueError("scipy.sparse.linalg.cg test failed")
print(" all tests passed...")
示例2: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_system(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
me = self.dtype_u(self.init)
me.values = cg(sp.eye(self.params.nvars[0] * self.params.nvars[1], format='csc') - factor * self.A,
rhs.values.flatten(), x0=u0.values.flatten(), tol=1E-12)[0]
me.values = me.values.reshape(self.params.nvars)
return me
示例3: cg_diffusion
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def cg_diffusion(qsims, Wn, alpha = 0.99, maxiter = 10, tol = 1e-3):
Wnn = eye(Wn.shape[0]) - alpha * Wn
out_sims = []
for i in range(qsims.shape[0]):
#f,inf = s_linalg.cg(Wnn, qsims[i,:], tol=tol, maxiter=maxiter)
f,inf = s_linalg.minres(Wnn, qsims[i,:], tol=tol, maxiter=maxiter)
out_sims.append(f.reshape(-1,1))
out_sims = np.concatenate(out_sims, axis = 1)
ranks = np.argsort(-out_sims, axis = 0)
return ranks
示例4: SetSolver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def SetSolver(self,linear_solver="direct", linear_solver_type="umfpack",
apply_preconditioner=False, preconditioner="amg_smoothed_aggregation",
iterative_solver_tolerance=1.0e-12, reduce_matrix_bandwidth=False,
geometric_discretisation=None):
"""
input:
linear_solver: [str] type of solver either "direct",
"iterative", "petsc" or "amg"
linear_solver_type [str] type of direct or linear solver to
use, for instance "umfpack", "superlu" or
"mumps" for direct solvers, or "cg", "gmres"
etc for iterative solvers or "amg" for algebraic
multigrid solver. See WhichSolvers method for
the complete set of available linear solvers
preconditioner: [str] either "smoothed_aggregation",
or "ruge_stuben" or "rootnode" for
a preconditioner based on algebraic multigrid
or "ilu" for scipy's spilu linear
operator
geometric_discretisation:
[str] type of geometric discretisation used, for
instance for FEM discretisations this would correspond
to "tri", "quad", "tet", "hex" etc
"""
self.solver_type = linear_solver
self.solver_subtype = "umfpack"
self.iterative_solver_tolerance = iterative_solver_tolerance
self.apply_preconditioner = apply_preconditioner
self.requires_cuthill_mckee = reduce_matrix_bandwidth
self.geometric_discretisation = geometric_discretisation
示例5: WhichLinearSolvers
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def WhichLinearSolvers(self):
return {"direct":["superlu", "umfpack", "mumps", "pardiso"],
"iterative":["cg", "bicg", "cgstab", "bicgstab", "gmres", "lgmres"],
"amg":["cg", "bicg", "cgstab", "bicgstab", "gmres", "lgmres"],
"petsc":["cg", "bicgstab", "gmres"]}
示例6: calc_scipy_sparse_linalg_cg
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def calc_scipy_sparse_linalg_cg(A, b, x0, maxiter=10):
x = np.zeros(len(b), dtype=np.float32)
x, _ = linalg.cg(A, b, x, tol=0., maxiter=maxiter)
res = x0 - x
return x, np.dot(res, res)
示例7: bench
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def bench(n=4*1024, sparsity=7, maxiter=10, iters=10):
# generate data
print("\nGenerating benchmark data for n = %i ..." %n)
A, b, x0 = setup_input(n, sparsity) # dense A
Asp = to_sparse(A) # sparse A
input_info(A, Asp)
# make benchmarks
print("Benchmarking CG solver for n = %i ..." %n)
t1 = timeit(calc_arrayfire, iters, args=(A, b, x0, maxiter))
print(" arrayfire - dense: %f ms" %t1)
t2 = timeit(calc_arrayfire, iters, args=(Asp, b, x0, maxiter))
print(" arrayfire - sparse: %f ms" %t2)
if np:
An = to_numpy(A)
bn = to_numpy(b)
x0n = to_numpy(x0)
t3 = timeit(calc_numpy, iters, args=(An, bn, x0n, maxiter))
print(" numpy - dense: %f ms" %t3)
if sp:
Asc = to_scipy_sparse(Asp)
t4 = timeit(calc_scipy_sparse, iters, args=(Asc, bn, x0n, maxiter))
print(" scipy - sparse: %f ms" %t4)
t5 = timeit(calc_scipy_sparse_linalg_cg, iters, args=(Asc, bn, x0n, maxiter))
print(" scipy - sparse.linalg.cg: %f ms" %t5)
示例8: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_system(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
class context:
num_iter = 0
def callback(xk):
context.num_iter += 1
return context.num_iter
me = self.dtype_u(self.init)
Id = sp.eye(self.params.nvars[0] * self.params.nvars[1])
me.values = cg(Id - factor * self.A, rhs.values.flatten(), x0=u0.values.flatten(), tol=self.params.lin_tol,
maxiter=self.params.lin_maxiter, callback=callback)[0]
me.values = me.values.reshape(self.params.nvars)
self.lin_ncalls += 1
self.lin_itercount += context.num_iter
return me
# noinspection PyUnusedLocal
示例9: solve_system_1
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_system_1(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
class context:
num_iter = 0
def callback(xk):
context.num_iter += 1
return context.num_iter
me = self.dtype_u(self.init)
Id = sp.eye(self.params.nvars[0] * self.params.nvars[1])
me.values = cg(Id - factor * self.A, rhs.values.flatten(), x0=u0.values.flatten(), tol=self.params.lin_tol,
maxiter=self.params.lin_maxiter, callback=callback)[0]
me.values = me.values.reshape(self.params.nvars)
self.lin_ncalls += 1
self.lin_itercount += context.num_iter
return me
示例10: get_offline_result
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def get_offline_result(i):
ids = trunc_ids[i]
trunc_lap = lap_alpha[ids][:, ids]
scores, _ = linalg.cg(trunc_lap, trunc_init, tol=1e-6, maxiter=20)
ranks = np.argsort(-scores)
scores = scores[ranks]
ranks = ids[ranks]
return scores, ranks
示例11: ngstep
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def ngstep(x0, obj0, objgrad0, obj_and_kl_func, hvpx0_func, max_kl, damping, max_cg_iter, enable_bt):
'''
Natural gradient step using hessian-vector products
Args:
x0: current point
obj0: objective value at x0
objgrad0: grad of objective value at x0
obj_and_kl_func: function mapping a point x to the objective and kl values
hvpx0_func: function mapping a vector v to the KL Hessian-vector product H(x0)v
max_kl: max kl divergence limit. Triggers a line search.
damping: multiple of I to mix with Hessians for Hessian-vector products
max_cg_iter: max conjugate gradient iterations for solving for natural gradient step
'''
assert x0.ndim == 1 and x0.shape == objgrad0.shape
# Solve for step direction
damped_hvp_func = lambda v: hvpx0_func(v) + damping*v
hvpop = ssl.LinearOperator(shape=(x0.shape[0], x0.shape[0]), matvec=damped_hvp_func)
step, _ = ssl.cg(hvpop, -objgrad0, maxiter=max_cg_iter)
fullstep = step / np.sqrt(.5 * step.dot(damped_hvp_func(step)) / max_kl + 1e-8)
# Line search on objective with a hard KL wall
if not enable_bt:
return x0+fullstep, 0
def barrierobj(p):
obj, kl = obj_and_kl_func(p)
return np.inf if kl > 2*max_kl else obj
xnew, num_bt_steps = btlinesearch(
f=barrierobj,
x0=x0,
fx0=obj0,
g=objgrad0,
dx=fullstep,
accept_ratio=.1, shrink_factor=.5, max_steps=10)
return xnew, num_bt_steps
示例12: _cg_wrapper
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def _cg_wrapper(A, b, x0=None, tol=1e-5, maxiter=None):
return cg(A, b, x0=x0, tol=tol, maxiter=maxiter, atol=0.0)
示例13: flow_matrix_row
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def flow_matrix_row(G, weight='weight', dtype=float, solver='lu'):
# Generate a row of the current-flow matrix
import numpy as np
from scipy import sparse
from scipy.sparse import linalg
solvername={"full" :FullInverseLaplacian,
"lu": SuperLUInverseLaplacian,
"cg": CGInverseLaplacian}
n = G.number_of_nodes()
L = laplacian_sparse_matrix(G, nodelist=range(n), weight=weight,
dtype=dtype, format='csc')
C = solvername[solver](L, dtype=dtype) # initialize solver
w = C.w # w is the Laplacian matrix width
# row-by-row flow matrix
for u,v,d in G.edges_iter(data=True):
B = np.zeros(w, dtype=dtype)
c = d.get(weight,1.0)
B[u%w] = c
B[v%w] = -c
# get only the rows needed in the inverse laplacian
# and multiply to get the flow matrix row
row = np.dot(B, C.get_rows(u,v))
yield row,(u,v)
# Class to compute the inverse laplacian only for specified rows
# Allows computation of the current-flow matrix without storing entire
# inverse laplacian matrix
示例14: solve
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve(self,rhs):
s = np.zeros(rhs.shape, dtype=self.dtype)
s[1:]=linalg.cg(self.L1, rhs[1:], M=self.M)[0]
return s
示例15: solve_inverse
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_inverse(self,r):
rhs = np.zeros(self.n, self.dtype)
rhs[r] = 1
return linalg.cg(self.L1, rhs[1:], M=self.M)[0]
# graph laplacian, sparse version, will move to linalg/laplacianmatrix.py