當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.cg方法代碼示例

本文整理匯總了Python中scipy.sparse.linalg.cg方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.cg方法的具體用法?Python linalg.cg怎麽用?Python linalg.cg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.linalg的用法示例。


在下文中一共展示了linalg.cg方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def test():
    print("\nTesting benchmark functions...")
    A, b, x0 = setup_input(n=50, sparsity=7)  # dense A
    Asp = to_sparse(A)
    x1, _ = calc_arrayfire(A, b, x0)
    x2, _ = calc_arrayfire(Asp, b, x0)
    if af.sum(af.abs(x1 - x2)/x2 > 1e-5):
        raise ValueError("arrayfire test failed")
    if np:
        An = to_numpy(A)
        bn = to_numpy(b)
        x0n = to_numpy(x0)
        x3, _ = calc_numpy(An, bn, x0n)
        if not np.allclose(x3, x1.to_list()):
            raise ValueError("numpy test failed")
    if sp:
        Asc = to_scipy_sparse(Asp)
        x4, _ = calc_scipy_sparse(Asc, bn, x0n)
        if not np.allclose(x4, x1.to_list()):
            raise ValueError("scipy.sparse test failed")
        x5, _ = calc_scipy_sparse_linalg_cg(Asc, bn, x0n)
        if not np.allclose(x5, x1.to_list()):
            raise ValueError("scipy.sparse.linalg.cg test failed")
    print("    all tests passed...") 
開發者ID:arrayfire,項目名稱:arrayfire-python,代碼行數:26,代碼來源:bench_cg.py

示例2: solve_system

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_system(self, rhs, factor, u0, t):
        """
        Simple linear solver for (I-factor*A)u = rhs

        Args:
            rhs (dtype_f): right-hand side for the linear system
            factor (float): abbrev. for the local stepsize (or any other factor required)
            u0 (dtype_u): initial guess for the iterative solver
            t (float): current time (e.g. for time-dependent BCs)

        Returns:
            dtype_u: solution as mesh
        """

        me = self.dtype_u(self.init)
        me.values = cg(sp.eye(self.params.nvars[0] * self.params.nvars[1], format='csc') - factor * self.A,
                       rhs.values.flatten(), x0=u0.values.flatten(), tol=1E-12)[0]
        me.values = me.values.reshape(self.params.nvars)
        return me 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:21,代碼來源:HeatEquation_2D_FD_periodic.py

示例3: cg_diffusion

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def cg_diffusion(qsims, Wn, alpha = 0.99, maxiter = 10, tol = 1e-3):
    Wnn = eye(Wn.shape[0]) - alpha * Wn
    out_sims = []
    for i in range(qsims.shape[0]):
        #f,inf = s_linalg.cg(Wnn, qsims[i,:], tol=tol, maxiter=maxiter)
        f,inf = s_linalg.minres(Wnn, qsims[i,:], tol=tol, maxiter=maxiter)
        out_sims.append(f.reshape(-1,1))
    out_sims = np.concatenate(out_sims, axis = 1)
    ranks = np.argsort(-out_sims, axis = 0)
    return ranks 
開發者ID:ducha-aiki,項目名稱:manifold-diffusion,代碼行數:12,代碼來源:diffussion.py

示例4: SetSolver

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def SetSolver(self,linear_solver="direct", linear_solver_type="umfpack",
        apply_preconditioner=False, preconditioner="amg_smoothed_aggregation",
        iterative_solver_tolerance=1.0e-12, reduce_matrix_bandwidth=False,
        geometric_discretisation=None):
        """

            input:
                linear_solver:          [str] type of solver either "direct",
                                        "iterative", "petsc" or "amg"

                linear_solver_type      [str] type of direct or linear solver to
                                        use, for instance "umfpack", "superlu" or
                                        "mumps" for direct solvers, or "cg", "gmres"
                                        etc for iterative solvers or "amg" for algebraic
                                        multigrid solver. See WhichSolvers method for
                                        the complete set of available linear solvers

                preconditioner:         [str] either "smoothed_aggregation",
                                        or "ruge_stuben" or "rootnode" for
                                        a preconditioner based on algebraic multigrid
                                        or "ilu" for scipy's spilu linear
                                        operator

                geometric_discretisation:
                                        [str] type of geometric discretisation used, for
                                        instance for FEM discretisations this would correspond
                                        to "tri", "quad", "tet", "hex" etc

        """

        self.solver_type = linear_solver
        self.solver_subtype = "umfpack"
        self.iterative_solver_tolerance = iterative_solver_tolerance
        self.apply_preconditioner = apply_preconditioner
        self.requires_cuthill_mckee = reduce_matrix_bandwidth
        self.geometric_discretisation = geometric_discretisation 
開發者ID:romeric,項目名稱:florence,代碼行數:38,代碼來源:LinearSolver.py

示例5: WhichLinearSolvers

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def WhichLinearSolvers(self):
        return {"direct":["superlu", "umfpack", "mumps", "pardiso"],
                "iterative":["cg", "bicg", "cgstab", "bicgstab", "gmres", "lgmres"],
                "amg":["cg", "bicg", "cgstab", "bicgstab", "gmres", "lgmres"],
                "petsc":["cg", "bicgstab", "gmres"]} 
開發者ID:romeric,項目名稱:florence,代碼行數:7,代碼來源:LinearSolver.py

示例6: calc_scipy_sparse_linalg_cg

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def calc_scipy_sparse_linalg_cg(A, b, x0, maxiter=10):
    x = np.zeros(len(b), dtype=np.float32)
    x, _ = linalg.cg(A, b, x, tol=0., maxiter=maxiter)
    res = x0 - x
    return x, np.dot(res, res) 
開發者ID:arrayfire,項目名稱:arrayfire-python,代碼行數:7,代碼來源:bench_cg.py

示例7: bench

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def bench(n=4*1024, sparsity=7, maxiter=10, iters=10):

    # generate data
    print("\nGenerating benchmark data for n = %i ..." %n)
    A, b, x0 = setup_input(n, sparsity)  # dense A
    Asp = to_sparse(A)  # sparse A
    input_info(A, Asp)

    # make benchmarks
    print("Benchmarking CG solver for n = %i ..." %n)
    t1 = timeit(calc_arrayfire, iters, args=(A, b, x0, maxiter))
    print("    arrayfire - dense:            %f ms" %t1)
    t2 = timeit(calc_arrayfire, iters, args=(Asp, b, x0, maxiter))
    print("    arrayfire - sparse:           %f ms" %t2)
    if np:
        An = to_numpy(A)
        bn = to_numpy(b)
        x0n = to_numpy(x0)
        t3 = timeit(calc_numpy, iters, args=(An, bn, x0n, maxiter))
        print("    numpy     - dense:            %f ms" %t3)
    if sp:
        Asc = to_scipy_sparse(Asp)
        t4 = timeit(calc_scipy_sparse, iters, args=(Asc, bn, x0n, maxiter))
        print("    scipy     - sparse:           %f ms" %t4)
        t5 = timeit(calc_scipy_sparse_linalg_cg, iters, args=(Asc, bn, x0n, maxiter))
        print("    scipy     - sparse.linalg.cg: %f ms" %t5) 
開發者ID:arrayfire,項目名稱:arrayfire-python,代碼行數:28,代碼來源:bench_cg.py

示例8: solve_system

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_system(self, rhs, factor, u0, t):
        """
        Simple linear solver for (I-factor*A)u = rhs

        Args:
            rhs (dtype_f): right-hand side for the linear system
            factor (float): abbrev. for the local stepsize (or any other factor required)
            u0 (dtype_u): initial guess for the iterative solver
            t (float): current time (e.g. for time-dependent BCs)

        Returns:
            dtype_u: solution as mesh
        """

        class context:
            num_iter = 0

        def callback(xk):
            context.num_iter += 1
            return context.num_iter

        me = self.dtype_u(self.init)

        Id = sp.eye(self.params.nvars[0] * self.params.nvars[1])

        me.values = cg(Id - factor * self.A, rhs.values.flatten(), x0=u0.values.flatten(), tol=self.params.lin_tol,
                       maxiter=self.params.lin_maxiter, callback=callback)[0]
        me.values = me.values.reshape(self.params.nvars)

        self.lin_ncalls += 1
        self.lin_itercount += context.num_iter

        return me


# noinspection PyUnusedLocal 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:38,代碼來源:AllenCahn_2D_FD.py

示例9: solve_system_1

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_system_1(self, rhs, factor, u0, t):
        """
        Simple linear solver for (I-factor*A)u = rhs

        Args:
            rhs (dtype_f): right-hand side for the linear system
            factor (float): abbrev. for the local stepsize (or any other factor required)
            u0 (dtype_u): initial guess for the iterative solver
            t (float): current time (e.g. for time-dependent BCs)

        Returns:
            dtype_u: solution as mesh
        """

        class context:
            num_iter = 0

        def callback(xk):
            context.num_iter += 1
            return context.num_iter

        me = self.dtype_u(self.init)

        Id = sp.eye(self.params.nvars[0] * self.params.nvars[1])

        me.values = cg(Id - factor * self.A, rhs.values.flatten(), x0=u0.values.flatten(), tol=self.params.lin_tol,
                       maxiter=self.params.lin_maxiter, callback=callback)[0]
        me.values = me.values.reshape(self.params.nvars)

        self.lin_ncalls += 1
        self.lin_itercount += context.num_iter

        return me 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:35,代碼來源:AllenCahn_2D_FD.py

示例10: get_offline_result

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def get_offline_result(i):
    ids = trunc_ids[i]
    trunc_lap = lap_alpha[ids][:, ids]
    scores, _ = linalg.cg(trunc_lap, trunc_init, tol=1e-6, maxiter=20)
    ranks = np.argsort(-scores)
    scores = scores[ranks]
    ranks = ids[ranks]
    return scores, ranks 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:10,代碼來源:reranking.py

示例11: ngstep

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def ngstep(x0, obj0, objgrad0, obj_and_kl_func, hvpx0_func, max_kl, damping, max_cg_iter, enable_bt):
    '''
    Natural gradient step using hessian-vector products

    Args:
        x0: current point
        obj0: objective value at x0
        objgrad0: grad of objective value at x0
        obj_and_kl_func: function mapping a point x to the objective and kl values
        hvpx0_func: function mapping a vector v to the KL Hessian-vector product H(x0)v
        max_kl: max kl divergence limit. Triggers a line search.
        damping: multiple of I to mix with Hessians for Hessian-vector products
        max_cg_iter: max conjugate gradient iterations for solving for natural gradient step
    '''

    assert x0.ndim == 1 and x0.shape == objgrad0.shape

    # Solve for step direction
    damped_hvp_func = lambda v: hvpx0_func(v) + damping*v
    hvpop = ssl.LinearOperator(shape=(x0.shape[0], x0.shape[0]), matvec=damped_hvp_func)
    step, _ = ssl.cg(hvpop, -objgrad0, maxiter=max_cg_iter)
    fullstep = step / np.sqrt(.5 * step.dot(damped_hvp_func(step)) / max_kl + 1e-8)

    # Line search on objective with a hard KL wall
    if not enable_bt:
        return x0+fullstep, 0

    def barrierobj(p):
        obj, kl = obj_and_kl_func(p)
        return np.inf if kl > 2*max_kl else obj
    xnew, num_bt_steps = btlinesearch(
        f=barrierobj,
        x0=x0,
        fx0=obj0,
        g=objgrad0,
        dx=fullstep,
        accept_ratio=.1, shrink_factor=.5, max_steps=10)
    return xnew, num_bt_steps 
開發者ID:openai,項目名稱:imitation,代碼行數:40,代碼來源:optim.py

示例12: _cg_wrapper

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def _cg_wrapper(A, b, x0=None, tol=1e-5, maxiter=None):
        return cg(A, b, x0=x0, tol=tol, maxiter=maxiter, atol=0.0) 
開發者ID:bwohlberg,項目名稱:sporco,代碼行數:4,代碼來源:linalg.py

示例13: flow_matrix_row

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def flow_matrix_row(G, weight='weight', dtype=float, solver='lu'):
    # Generate a row of the current-flow matrix
    import numpy as np
    from scipy import sparse
    from scipy.sparse import linalg
    solvername={"full" :FullInverseLaplacian,
                "lu": SuperLUInverseLaplacian,
                "cg": CGInverseLaplacian}
    n = G.number_of_nodes()
    L = laplacian_sparse_matrix(G, nodelist=range(n), weight=weight, 
                                dtype=dtype, format='csc')
    C = solvername[solver](L, dtype=dtype) # initialize solver
    w = C.w # w is the Laplacian matrix width
    # row-by-row flow matrix
    for u,v,d in G.edges_iter(data=True):
        B = np.zeros(w, dtype=dtype)
        c = d.get(weight,1.0)
        B[u%w] = c
        B[v%w] = -c
        # get only the rows needed in the inverse laplacian 
        # and multiply to get the flow matrix row
        row = np.dot(B, C.get_rows(u,v))  
        yield row,(u,v) 


# Class to compute the inverse laplacian only for specified rows
# Allows computation of the current-flow matrix without storing entire
# inverse laplacian matrix 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:30,代碼來源:flow_matrix.py

示例14: solve

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve(self,rhs):
        s = np.zeros(rhs.shape, dtype=self.dtype)
        s[1:]=linalg.cg(self.L1, rhs[1:], M=self.M)[0]
        return s 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:6,代碼來源:flow_matrix.py

示例15: solve_inverse

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import cg [as 別名]
def solve_inverse(self,r):
        rhs = np.zeros(self.n, self.dtype)
        rhs[r] = 1
        return linalg.cg(self.L1, rhs[1:], M=self.M)[0]


# graph laplacian, sparse version, will move to linalg/laplacianmatrix.py 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:9,代碼來源:flow_matrix.py


注:本文中的scipy.sparse.linalg.cg方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。