本文整理匯總了Python中scipy.sparse.bsr_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.bsr_matrix方法的具體用法?Python sparse.bsr_matrix怎麽用?Python sparse.bsr_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse
的用法示例。
在下文中一共展示了sparse.bsr_matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_is_extension_type
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_extension_type(check_scipy):
assert not com.is_extension_type([1, 2, 3])
assert not com.is_extension_type(np.array([1, 2, 3]))
assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3]))
cat = pd.Categorical([1, 2, 3])
assert com.is_extension_type(cat)
assert com.is_extension_type(pd.Series(cat))
assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
assert com.is_extension_type(pd.DatetimeIndex(['2000'], tz="US/Eastern"))
dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
assert com.is_extension_type(s)
if check_scipy:
import scipy.sparse
assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3]))
示例2: test_is_extension_type
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_extension_type(check_scipy):
assert not com.is_extension_type([1, 2, 3])
assert not com.is_extension_type(np.array([1, 2, 3]))
assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3]))
cat = pd.Categorical([1, 2, 3])
assert com.is_extension_type(cat)
assert com.is_extension_type(pd.Series(cat))
assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
assert com.is_extension_type(s)
if check_scipy:
import scipy.sparse
assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3]))
示例3: test_is_extension_type
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_extension_type():
assert not com.is_extension_type([1, 2, 3])
assert not com.is_extension_type(np.array([1, 2, 3]))
assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3]))
cat = pd.Categorical([1, 2, 3])
assert com.is_extension_type(cat)
assert com.is_extension_type(pd.Series(cat))
assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
assert com.is_extension_type(s)
# This test will only skip if the previous assertions
# pass AND scipy is not installed.
sparse = pytest.importorskip("scipy.sparse")
assert not com.is_extension_type(sparse.bsr_matrix([1, 2, 3]))
示例4: random_bsr_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"):
Y = np.zeros((M, N), dtype=dtype)
assert M % BS_R == 0
assert N % BS_C == 0
nnz = int(density * M * N)
num_blocks = int(nnz / (BS_R * BS_C)) + 1
candidate_blocks = np.asarray(
list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))
)
assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
chosen_blocks = candidate_blocks[
np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)
]
for i in range(len(chosen_blocks)):
r, c = chosen_blocks[i]
Y[r : r + BS_R, c : c + BS_C] = np.random.uniform(-0.1, 0.1, (BS_R, BS_C))
s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
assert s.data.shape == (num_blocks, BS_R, BS_C)
assert s.data.size >= nnz
assert s.indices.shape == (num_blocks,)
assert s.indptr.shape == (M // BS_R + 1,)
return s.todense()
示例5: random_bsr_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"):
Y = np.zeros((M, N), dtype=dtype)
assert M % BS_R == 0
assert N % BS_C == 0
nnz = int(density * M * N)
num_blocks = int(nnz / (BS_R * BS_C)) + 1
candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C))))
assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)]
for i in range(len(chosen_blocks)):
r, c = chosen_blocks[i]
Y[r:r+BS_R,c:c+BS_C] = np.random.randn(BS_R, BS_C)
s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
assert s.data.shape == (num_blocks, BS_R, BS_C)
assert s.data.size >= nnz
assert s.indices.shape == (num_blocks, )
assert s.indptr.shape == (M // BS_R + 1, )
return s
示例6: random_bsr_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype):
import itertools
Y = np.zeros((M, N), dtype=dtype)
assert M % BS_R == 0
assert N % BS_C == 0
nnz = int(density * M * N)
num_blocks = int(nnz / (BS_R * BS_C)) + 1
candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C))))
assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)]
for i in range(len(chosen_blocks)):
r, c = chosen_blocks[i]
Y[r:r + BS_R, c:c + BS_C] = np.random.randn(BS_R, BS_C)
s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
assert s.data.shape == (num_blocks, BS_R, BS_C)
assert s.indices.shape == (num_blocks, )
assert s.indptr.shape == (M // BS_R + 1, )
return s
示例7: test_is_sparse
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_sparse(check_scipy):
assert com.is_sparse(pd.SparseArray([1, 2, 3]))
assert com.is_sparse(pd.SparseSeries([1, 2, 3]))
assert not com.is_sparse(np.array([1, 2, 3]))
if check_scipy:
import scipy.sparse
assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))
示例8: test_is_scipy_sparse
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_scipy_sparse():
from scipy.sparse import bsr_matrix
assert com.is_scipy_sparse(bsr_matrix([1, 2, 3]))
assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3]))
assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
示例9: test_scale_rows_and_cols
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_scale_rows_and_cols(self):
D = matrix([[1,0,0,2,3],
[0,4,0,5,0],
[0,0,6,7,0]])
#TODO expose through function
S = csr_matrix(D)
v = array([1,2,3])
csr_scale_rows(3,5,S.indptr,S.indices,S.data,v)
assert_equal(S.todense(), diag(v)*D)
S = csr_matrix(D)
v = array([1,2,3,4,5])
csr_scale_columns(3,5,S.indptr,S.indices,S.data,v)
assert_equal(S.todense(), D*diag(v))
# blocks
E = kron(D,[[1,2],[3,4]])
S = bsr_matrix(E,blocksize=(2,2))
v = array([1,2,3,4,5,6])
bsr_scale_rows(3,5,2,2,S.indptr,S.indices,S.data,v)
assert_equal(S.todense(), diag(v)*E)
S = bsr_matrix(E,blocksize=(2,2))
v = array([1,2,3,4,5,6,7,8,9,10])
bsr_scale_columns(3,5,2,2,S.indptr,S.indices,S.data,v)
assert_equal(S.todense(), E*diag(v))
E = kron(D,[[1,2,3],[4,5,6]])
S = bsr_matrix(E,blocksize=(2,3))
v = array([1,2,3,4,5,6])
bsr_scale_rows(3,5,2,3,S.indptr,S.indices,S.data,v)
assert_equal(S.todense(), diag(v)*E)
S = bsr_matrix(E,blocksize=(2,3))
v = array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
bsr_scale_columns(3,5,2,3,S.indptr,S.indices,S.data,v)
assert_equal(S.todense(), E*diag(v))
示例10: test_check_symmetric
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_check_symmetric():
arr_sym = np.array([[0, 1], [1, 2]])
arr_bad = np.ones(2)
arr_asym = np.array([[0, 2], [0, 2]])
test_arrays = {'dense': arr_asym,
'dok': sp.dok_matrix(arr_asym),
'csr': sp.csr_matrix(arr_asym),
'csc': sp.csc_matrix(arr_asym),
'coo': sp.coo_matrix(arr_asym),
'lil': sp.lil_matrix(arr_asym),
'bsr': sp.bsr_matrix(arr_asym)}
# check error for bad inputs
assert_raises(ValueError, check_symmetric, arr_bad)
# check that asymmetric arrays are properly symmetrized
for arr_format, arr in test_arrays.items():
# Check for warnings and errors
assert_warns(UserWarning, check_symmetric, arr)
assert_raises(ValueError, check_symmetric, arr, raise_exception=True)
output = check_symmetric(arr, raise_warning=False)
if sp.issparse(output):
assert_equal(output.format, arr_format)
assert_array_equal(output.toarray(), arr_sym)
else:
assert_array_equal(output, arr_sym)
示例11: test_zero_variance
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_zero_variance():
# Test VarianceThreshold with default setting, zero variance.
for X in [data, csr_matrix(data), csc_matrix(data), bsr_matrix(data)]:
sel = VarianceThreshold().fit(X)
assert_array_equal([0, 1, 3, 4], sel.get_support(indices=True))
assert_raises(ValueError, VarianceThreshold().fit, [[0, 1, 2, 3]])
assert_raises(ValueError, VarianceThreshold().fit, [[0, 1], [0, 1]])
示例12: bsr_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def bsr_matrix(*args, **kws):
"""Takes the same arguments as ``scipy.sparse.bsr_matrix``.
Returns a BSR CUDA matrix.
"""
mat = ss.bsr_matrix(*args, **kws)
return CudaBSRMatrix().from_host_matrix(mat)
示例13: test_is_sparse
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_sparse():
assert com.is_sparse(pd.SparseArray([1, 2, 3]))
assert com.is_sparse(pd.SparseSeries([1, 2, 3]))
assert not com.is_sparse(np.array([1, 2, 3]))
# This test will only skip if the previous assertions
# pass AND scipy is not installed.
sparse = pytest.importorskip("scipy.sparse")
assert not com.is_sparse(sparse.bsr_matrix([1, 2, 3]))
示例14: test_is_scipy_sparse
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def test_is_scipy_sparse():
tm._skip_if_no_scipy()
from scipy.sparse import bsr_matrix
assert com.is_scipy_sparse(bsr_matrix([1, 2, 3]))
assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3]))
assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
示例15: check_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import bsr_matrix [as 別名]
def check_matrix(X, format='csc', dtype=np.float32):
"""
This function takes a matrix as input and transforms it into the specified format.
The matrix in input can be either sparse or ndarray.
If the matrix in input has already the desired format, it is returned as-is
the dtype parameter is always applied and the default is np.float32
:param X:
:param format:
:param dtype:
:return:
"""
if format == 'csc' and not isinstance(X, sps.csc_matrix):
return X.tocsc().astype(dtype)
elif format == 'csr' and not isinstance(X, sps.csr_matrix):
return X.tocsr().astype(dtype)
elif format == 'coo' and not isinstance(X, sps.coo_matrix):
return X.tocoo().astype(dtype)
elif format == 'dok' and not isinstance(X, sps.dok_matrix):
return X.todok().astype(dtype)
elif format == 'bsr' and not isinstance(X, sps.bsr_matrix):
return X.tobsr().astype(dtype)
elif format == 'dia' and not isinstance(X, sps.dia_matrix):
return X.todia().astype(dtype)
elif format == 'lil' and not isinstance(X, sps.lil_matrix):
return X.tolil().astype(dtype)
elif format == 'npy':
if sps.issparse(X):
return X.toarray().astype(dtype)
else:
return np.array(X)
elif isinstance(X, np.ndarray):
X = sps.csr_matrix(X, dtype=dtype)
X.eliminate_zeros()
return check_matrix(X, format=format, dtype=dtype)
else:
return X.astype(dtype)