本文整理匯總了Python中scipy.sin方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.sin方法的具體用法?Python scipy.sin怎麽用?Python scipy.sin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.sin方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Z_Burnett
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sin [as 別名]
def Z_Burnett(Tr, Pr):
"""Calculate gas compressibility factor using the Burnett (1979)
correlation
Parameters
------------
Tr : float
Reduced temperature [-]
Pr : float
Reduced pressure [-]
Returns
-------
Z : float
Gas compressibility factor [-]
Notes
-----
The correlation is in cited reference, the parameters are least square
fitting by Leung.
Raise :class:`NotImplementedError` if input pair isn't in limit:
* 1.3 ≤ Tr ≤ 3
* 0.2 ≤ Pr ≤ 4
"""
# FIXME: Don't work
# Check input in range of validity
if Tr < 1.1 or Tr > 2.6 or Pr < 0.5 or Pr > 11:
raise NotImplementedError("Incoming out of bound")
Zo = 0.3379*log(log(Tr)) + 1.091
Po = 21.46*Zo - 11.9*Zo**2 - 5.9
N = (1.1 + 0.26*Tr + (1.04-1.42*Tr)*Pr/Po)*exp(Pr/Po)/Tr
Z = 1 + (Zo-1) * sin(pi/2*Pr/Po)**N
return unidades.Dimensionless(Z)
示例2: Mu_Muerto
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sin [as 別名]
def Mu_Muerto(self, T):
"""Viscosidad de petroleos muertos (sin gas disuelto)"""
metodos=[self.Mu_Beal, self.Mu_Beggs_Robinson, self.Mu_Glaso, self.Mu_Egbogah, self.Mu_Kartoatmodjo_Schmidt][Preferences.getint("petro", "mu_dead")]
return metodos(T)
示例3: spherical_integral
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sin [as 別名]
def spherical_integral(C,rho):
"""
Calculate the integral of a function over a unit sphere.
"""
# phi - azimuthal angle (angle in xy-plane)
# theta - polar angle (angle between z and xy-plane)
# ( y , x )
def func(theta,phi,C,rho): # Test function. Can I get 4*pi^2????
x = sp.cos(phi)*sp.sin(theta)
y = sp.sin(phi)*sp.sin(theta)
z = sp.cos(theta)
#dir = sp.array((x,y,z))
#dc = dir_cosines(dir)
dc = sp.array((x,y,z)) # Turns out these are direction cosines!
Gamma = make_gamma(dc,C)
rho_c_square = linalg.eigvals(Gamma).real # GPa
rho_c_square = rho_c_square*1e9 # Pa
sound_vel = sp.sqrt(rho_c_square/rho) # m/s
integrand = 1/(sound_vel[0]**3) + 1/(sound_vel[1]**3) + 1/(sound_vel[2]**3)
return integrand*sp.sin(theta)
# ( y , x )
#def sfunc(theta,phi,args=()):
# return func(theta,phi,args)*sp.sin(theta)
integral,error = dblquad(func,0,2*sp.pi,lambda g: 0,lambda h:
sp.pi,args=(C,rho))
return integral
#direction = sp.array((1.0,1.0,1.0))
#dc = dir_cosines(direction)
#C = read_file.read_file(sys.argv[1])
#C.pop(0)
#C = sp.array(C,float)
#Gamma = make_gamma(dc,C)
#density = 7500 #kg/m**3
#density = float(read_file.read_file(sys.argv[2])[0][0])
#rho_c_square = linalg.eigvals(Gamma) #GPa
#rho_c_square = rho_c_square*1e9 #Pa
#sound_vel = sp.sqrt(rho_c_square/density).real
#avg_vel = sp.average(sound_vel)
#print Gamma
#print direction
#print C
#print rho_c_square
#print rho_c_square.real
#print sound_vel," in m/s"
#print avg_vel
#print spherical_integral(C,density)