本文整理匯總了Python中scipy.minimum方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.minimum方法的具體用法?Python scipy.minimum怎麽用?Python scipy.minimum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.minimum方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_question
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def load_question(params):
df = pd.read_csv(config.QUESTION_FILE)
df["words"] = df.words.str.split(" ").apply(lambda x: [_to_ind(z) for z in x])
df["chars"] = df.chars.str.split(" ").apply(lambda x: [_to_ind(z) for z in x])
Q = {}
Q["seq_len_word"] = sp.minimum(df["words"].apply(len).values, params["max_seq_len_word"])
Q["seq_len_char"] = sp.minimum(df["chars"].apply(len).values, params["max_seq_len_char"])
Q["words"] = pad_sequences(df["words"],
maxlen=params["max_seq_len_word"],
padding=params["pad_sequences_padding"],
truncating=params["pad_sequences_truncating"],
value=config.PADDING_INDEX_WORD)
Q["chars"] = pad_sequences(df["chars"],
maxlen=params["max_seq_len_char"],
padding=params["pad_sequences_padding"],
truncating=params["pad_sequences_truncating"],
value=config.PADDING_INDEX_CHAR)
return Q
示例2: log_loss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def log_loss(actual, predicted, epsilon=1e-15):
"""
Calculates and returns the log loss (error) of a set of predicted probabilities
(hint: see sklearn classifier's predict_proba methods).
Source: https://www.kaggle.com/wiki/LogarithmicLoss
In plain English, this error metric is typically used where you have to predict
that something is true or false with a probability (likelihood) ranging from
definitely true (1) to equally true (0.5) to definitely false(0).
Note: also see (and use) scikitlearn:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html#sklearn.metrics.log_loss
"""
predicted = sp.maximum(epsilon, predicted)
predicted = sp.minimum(1-epsilon, predicted)
ll = sum(actual*sp.log(predicted) + sp.subtract(1,actual)*sp.log(sp.subtract(1,predicted)))
ll = ll * -1.0/len(actual)
return ll
示例3: binary_logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def binary_logloss(p, y):
epsilon = 1e-15
p = sp.maximum(epsilon, p)
p = sp.minimum(1-epsilon, p)
res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
res *= -1.0/len(y)
return res
示例4: logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def logloss(p, y):
epsilon = 1e-15
p = sp.maximum(epsilon, p)
p = sp.minimum(1-epsilon, p)
ll = sum(y*sp.log(p) + sp.subtract(1,y)*sp.log(sp.subtract(1,p)))
ll = ll * -1.0/len(y)
return ll
# B. Apply hash trick of the original csv row
# for simplicity, we treat both integer and categorical features as categorical
# INPUT:
# csv_row: a csv dictionary, ex: {'Lable': '1', 'I1': '357', 'I2': '', ...}
# D: the max index that we can hash to
# OUTPUT:
# x: a list of indices that its value is 1
示例5: log_loss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def log_loss(solution, prediction, task = 'binary.classification'):
''' Log loss for binary and multiclass. '''
[sample_num, label_num] = solution.shape
eps = 1e-15
pred = np.copy(prediction) # beware: changes in prediction occur through this
sol = np.copy(solution)
if (task == 'multiclass.classification') and (label_num>1):
# Make sure the lines add up to one for multi-class classification
norma = np.sum(prediction, axis=1)
for k in range(sample_num):
pred[k,:] /= sp.maximum (norma[k], eps)
# Make sure there is a single label active per line for multi-class classification
sol = binarize_predictions(solution, task='multiclass.classification')
# For the base prediction, this solution is ridiculous in the multi-label case
# Bounding of predictions to avoid log(0),1/0,...
pred = sp.minimum (1-eps, sp.maximum (eps, pred))
# Compute the log loss
pos_class_log_loss = - mvmean(sol*np.log(pred), axis=0)
if (task != 'multiclass.classification') or (label_num==1):
# The multi-label case is a bunch of binary problems.
# The second class is the negative class for each column.
neg_class_log_loss = - mvmean((1-sol)*np.log(1-pred), axis=0)
log_loss = pos_class_log_loss + neg_class_log_loss
# Each column is an independent problem, so we average.
# The probabilities in one line do not add up to one.
# log_loss = mvmean(log_loss)
# print('binary {}'.format(log_loss))
# In the multilabel case, the right thing i to AVERAGE not sum
# We return all the scores so we can normalize correctly later on
else:
# For the multiclass case the probabilities in one line add up one.
log_loss = pos_class_log_loss
# We sum the contributions of the columns.
log_loss = np.sum(log_loss)
#print('multiclass {}'.format(log_loss))
return log_loss
示例6: logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def logloss(y_true, y_predicted):
epsilon = 1e-6
y_predicted = sp.maximum(epsilon, y_predicted)
y_predicted = sp.minimum(1 - epsilon, y_predicted)
ll = log_loss(y_true, y_predicted)
return ll
示例7: set_reach_dist
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def set_reach_dist(SetOfObjects, point_index, epsilon):
"""
Sets reachability distance and ordering. This function is the primary workhorse of
the OPTICS algorithm.
SetofObjects: Instantiated and prepped instance of 'setOfObjects' class
epsilon: Determines maximum object size that can be extracted. Smaller epsilons
reduce run time. (float)
"""
row = [SetOfObjects.data[point_index,:]]
indices = np.argsort(row)
distances = np.sort(row)
if scipy.iterable(distances):
unprocessed = indices[(SetOfObjects._processed[indices] < 1)[0].T]
rdistances = scipy.maximum(distances[(SetOfObjects._processed[indices] < 1)[0].T],
SetOfObjects._core_dist[point_index])
SetOfObjects._reachability[unprocessed] = scipy.minimum(
SetOfObjects._reachability[unprocessed], rdistances)
if unprocessed.size > 0:
return unprocessed[np.argsort(np.array(SetOfObjects._reachability[
unprocessed]))[0]]
else:
return point_index
else:
return point_index
示例8: my_logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def my_logloss(act, pred):
epsilon = 1e-15
pred = K.maximum(epsilon, pred)
pred = K.minimum(1 - epsilon, pred)
ll = K.sum(act * K.log(pred) + (1 - act) * K.log(1 - pred))
ll = ll * -1.0 / K.shape(act)[0]
return ll
示例9: logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def logloss(act, pred):
'''
官方給的損失函數
:param act:
:param pred:
:return:
'''
epsilon = 1e-15
pred = sp.maximum(epsilon, pred)
pred = sp.minimum(1 - epsilon, pred)
ll = sum(act * sp.log(pred) + sp.subtract(1, act) * sp.log(sp.subtract(1, pred)))
ll = ll * -1.0 / len(act)
return ll
示例10: log_loss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def log_loss( act, pred ):
epsilon = 1e-15
pred = sp.maximum(epsilon, pred)
pred = sp.minimum(1-epsilon, pred)
ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
ll = ll * -1.0/len(act)
return ll
示例11: mnn_from_list
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def mnn_from_list(knn_graph_list):
"""Apply reduce function to calculate the mutual kNN.
"""
import functools
mnn = (
functools.reduce(scipy.sparse.csr.csr_matrix.minimum, knn_graph_list)
if issparse(knn_graph_list[0])
else functools.reduce(scipy.minimum, knn_graph_list)
)
return mnn
示例12: llfun
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def llfun(act, pred):
p_true = pred[:, 1]
epsilon = 1e-15
p_true = sp.maximum(epsilon, p_true)
p_true = sp.minimum(1 - epsilon, p_true)
ll = sum(act * sp.log(p_true) + sp.subtract(1, act) * sp.log(sp.subtract(1, p_true)))
ll = ll * -1.0 / len(act)
return ll
示例13: logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import minimum [as 別名]
def logloss(act, pred):
epsilon = 1e-15
pred = sp.maximum(epsilon, pred)
pred = sp.minimum(1-epsilon, pred)
ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
ll = ll * -1.0/len(act)
return ll