本文整理匯總了Python中scipy.linspace方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.linspace方法的具體用法?Python scipy.linspace怎麽用?Python scipy.linspace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.linspace方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: m_circles
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def m_circles(mags, phase_min=-359.75, phase_max=-0.25):
"""Constant-magnitude contours of the function Gcl = Gol/(1+Gol), where
Gol is an open-loop transfer function, and Gcl is a corresponding
closed-loop transfer function.
Parameters
----------
mags : array-like
Array of magnitudes in dB of the M-circles
phase_min : degrees
Minimum phase in degrees of the N-circles
phase_max : degrees
Maximum phase in degrees of the N-circles
Returns
-------
contours : complex array
Array of complex numbers corresponding to the contours.
"""
# Convert magnitudes and phase range into a grid suitable for
# building contours
phases = sp.radians(sp.linspace(phase_min, phase_max, 2000))
Gcl_mags, Gcl_phases = sp.meshgrid(10.0**(mags/20.0), phases)
return closed_loop_contours(Gcl_mags, Gcl_phases)
示例2: _draw_horizontal_guides_
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def _draw_horizontal_guides_(self, canvas, axis_color=pyx.color.cmyk.Gray):
"""
draws horizontal guides
"""
p = self.grid_box.params
if p['horizontal_guides']:
line = pyx.path.path()
nr = p['horizontal_guide_nr']
for y in scipy.linspace(self.grid_box.y_top, self.grid_box.y_bottom, nr):
xt1 = self._give_trafo_x_(self.grid_box.x_left, y)
yt1 = self._give_trafo_y_(self.grid_box.x_left, y)
xt2 = self._give_trafo_x_(self.grid_box.x_right, y)
yt2 = self._give_trafo_y_(self.grid_box.x_right, y)
line.append(pyx.path.moveto(xt1, yt1))
line.append(pyx.path.lineto(xt2, yt2))
canvas.stroke(line, [pyx.style.linewidth.normal, pyx.style.linestyle.dotted,
p['u_axis_color']])
self.ref_block_lines.append(line)
示例3: _draw_vertical_guides_
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def _draw_vertical_guides_(self, canvas, axis_color=pyx.color.cmyk.Gray):
"""
draws vertical guides
"""
p = self.grid_box.params
if p['vertical_guides']:
line = pyx.path.path()
nr = p['vertical_guide_nr']
for x in scipy.linspace(self.grid_box.x_left, self.grid_box.x_right, nr):
xt1 = self._give_trafo_x_(x, self.grid_box.y_top)
yt1 = self._give_trafo_y_(x, self.grid_box.y_top)
xt2 = self._give_trafo_x_(x, self.grid_box.y_bottom)
yt2 = self._give_trafo_y_(x, self.grid_box.y_bottom)
line.append(pyx.path.moveto(xt1, yt1))
line.append(pyx.path.lineto(xt2, yt2))
canvas.stroke(line, [pyx.style.linewidth.normal, pyx.style.linestyle.dotted,
p['wd_axis_color']])
# take handle
self.ref_block_lines.append(line)
示例4: SIS_process
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def SIS_process(G, degree_prob, tmax, tau, gamma):
N=G.order()
plt.figure(5)
plt.clf()
plt.figure(6)
plt.clf()
for index, starting_node in enumerate([x*N/10. for x in range(10)]):
plt.figure(5)
t, S, I = EoN.fast_SIS(G, tau, gamma, initial_infecteds = [starting_node], tmax = tmax)
#print(I[-1])
subt = scipy.linspace(0, tmax, 501)
subI = EoN.subsample(subt, t, I)
plt.plot(subt,subI)
if I[-1]>100:
plt.figure(6)
shift = EoN.get_time_shift(t, I, 1000)
plt.plot(subt-shift, subI)
plt.figure(5)
plt.savefig('sw_SIS_epi_N{}_p{}_k{}_tau{}.pdf'.format(N, p, k, tau))
plt.figure(6)
plt.savefig('sw_SIS_epi_N{}_p{}_k{}_tau{}_shifted.pdf'.format(N, p, k, tau))
示例5: star_graph_lumped
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def star_graph_lumped(N, tau, gamma, I0, tmin, tmax, tcount):
times = scipy.linspace(tmin, tmax, tcount)
# [[central node infected] + [central node susceptible]]
#X = [Y_1^1, Y_1^2, ..., Y_1^{N}, Y_2^0, Y_2^1, ..., Y_2^{N-1}]
X0 = scipy.zeros(2*N) #length 2*N of just 0 entries
X0[I0]=I0*1./N #central infected, + I0-1 periph infected prob
X0[N+I0] = 1-I0*1./N #central suscept + I0 periph infected
X = EoN.my_odeint(star_graph_dX, X0, times, args = (tau, gamma, N))
#X looks like [[central susceptible,k periph] [ central inf, k-1 periph]] x T
central_inf = X[:,:N]
central_susc = X[:,N:]
I = scipy.array([ sum(k*central_susc[t][k] for k in range(N))
+ sum((k+1)*central_inf[t][k] for k in range(N))
for t in range(len(X))])
S = N-I
return times, S, I
示例6: process_degree_distribution
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def process_degree_distribution(N, Pk, color, Psi, DPsi, symbol, label, count):
report_times = scipy.linspace(0,30,3000)
sums = 0*report_times
for cnt in range(count):
G = generate_network(Pk, N)
t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho)
plt.plot(t, I*1./N, '-', color = color,
alpha = 0.1, linewidth=1)
subsampled_I = EoN.subsample(report_times, t, I)
sums += subsampled_I*1./N
ave = sums/count
plt.plot(report_times, ave, color = 'k')
#Do EBCM
N= G.order()#N is arbitrary, but included because our implementation of EBCM assumes N is given.
t, S, I, R = EoN.EBCM_uniform_introduction(N, Psi, DPsi, tau, gamma, rho, tmin=0, tmax=10, tcount = 41)
plt.plot(t, I/N, symbol, color = color, markeredgecolor='k', label=label)
for cnt in range(3): #do 3 highlighted simulations
G = generate_network(Pk, N)
t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho)
plt.plot(t, I*1./N, '-', color = 'k', linewidth=0.1)
示例7: star_graph_lumped
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def star_graph_lumped(N, tau, gamma, I0, tmin, tmax, tcount):
times = scipy.linspace(tmin, tmax, tcount)
# [[central node infected] + [central node susceptible]]
#X = [Y_1^1, Y_1^2, ..., Y_1^{N}, Y_2^0, Y_2^1, ..., Y_2^{N-1}]
X0 = scipy.zeros(2*N) #length 2*N of just 0 entries
#X0[I0]=I0*1./N #central infected, + I0-1 periph infected prob
X0[N+I0] = 1#-I0*1./N #central suscept + I0 periph infected
X = EoN.my_odeint(star_graph_dX, X0, times, args = (tau, gamma, N))
#X looks like [[central susceptible,k periph] [ central inf, k-1 periph]] x T
central_susc = X[:,N:]
central_inf = X[:,:N]
print(central_susc[-1][:])
print(central_inf[-1][:])
I = scipy.array([ sum(k*central_susc[t][k] for k in range(N))
+ sum((k+1)*central_inf[t][k] for k in range(N))
for t in range(len(X))])
S = N-I
return times, S, I
示例8: sim_and_plot
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def sim_and_plot(G, tau, gamma, rho, tmax, tcount, ax):
t, S, I = EoN.fast_SIS(G, tau, gamma, rho = rho, tmax = tmax)
report_times = scipy.linspace(0, tmax, tcount)
I = EoN.subsample(report_times, t, I)
ax.plot(report_times, I/N, color='grey', linewidth=5, alpha=0.3)
t, S, I, = EoN.SIS_heterogeneous_meanfield_from_graph(G, tau, gamma, rho=rho,
tmax=tmax, tcount=tcount)
ax.plot(t, I/N, '--')
t, S, I = EoN.SIS_compact_pairwise_from_graph(G, tau, gamma, rho=rho,
tmax=tmax, tcount=tcount)
ax.plot(t, I/N)
t, S, I = EoN.SIS_homogeneous_pairwise_from_graph(G, tau, gamma, rho=rho,
tmax=tmax, tcount=tcount)
ax.plot(t, I/N, '-.')
示例9: generate_data
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def generate_data(N, S, L):
# generate genetics
G = 1.0 * (sp.rand(N, S) < 0.2)
G -= G.mean(0)
G /= G.std(0) * sp.sqrt(G.shape[1])
# generate latent phenotypes
Zg = sp.dot(G, sp.randn(G.shape[1], L))
Zn = sp.randn(N, L)
# generate variance exapleind
vg = sp.linspace(0.8, 0, L)
# rescale and sum
Zg *= sp.sqrt(vg / Zg.var(0))
Zn *= sp.sqrt((1 - vg) / Zn.var(0))
Z = Zg + Zn
return Z, G
示例10: makehistogram
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def makehistogram(indata, histlen, binsize=None, therange=None):
"""
Parameters
----------
indata
histlen
binsize
therange
Returns
-------
"""
if therange is None:
therange = [indata.min(), indata.max()]
if histlen is None and binsize is None:
thebins = 10
elif binsize is not None:
thebins = sp.linspace(therange[0], therange[1], (therange[1] - therange[0]) / binsize + 1, endpoint=True)
else:
thebins = histlen
thehist = np.histogram(indata, thebins, therange)
return thehist
示例11: upsample
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def upsample(inputdata, Fs_init, Fs_higher, method='univariate', intfac=False, debug=False):
starttime = time.time()
if Fs_higher <= Fs_init:
print('upsample: target frequency must be higher than initial frequency')
sys.exit()
# upsample
orig_x = sp.linspace(0.0, (1.0 / Fs_init) * len(inputdata), num=len(inputdata), endpoint=False)
endpoint = orig_x[-1] - orig_x[0]
ts_higher = 1.0 / Fs_higher
numresamppts = int(endpoint // ts_higher + 1)
if intfac:
numresamppts = int(Fs_higher // Fs_init) * len(inputdata)
else:
numresamppts = int(endpoint // ts_higher + 1)
upsampled_x = np.arange(0.0, ts_higher * numresamppts, ts_higher)
upsampled_y = doresample(orig_x, inputdata, upsampled_x, method=method)
initfilter = tide_filt.noncausalfilter(filtertype='arb', usebutterworth=False, debug=debug)
stopfreq = np.min([1.1 * Fs_init / 2.0, Fs_higher / 2.0])
initfilter.setfreqs(0.0, 0.0, Fs_init / 2.0, stopfreq)
upsampled_y = initfilter.apply(Fs_higher, upsampled_y)
if debug:
print('upsampling took', time.time() - starttime, 'seconds')
return upsampled_y
示例12: n_circles
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def n_circles(phases, mag_min=-40.0, mag_max=12.0):
"""Constant-phase contours of the function Gcl = Gol/(1+Gol), where
Gol is an open-loop transfer function, and Gcl is a corresponding
closed-loop transfer function.
Parameters
----------
phases : array-like
Array of phases in degrees of the N-circles
mag_min : dB
Minimum magnitude in dB of the N-circles
mag_max : dB
Maximum magnitude in dB of the N-circles
Returns
-------
contours : complex array
Array of complex numbers corresponding to the contours.
"""
# Convert phases and magnitude range into a grid suitable for
# building contours
mags = sp.linspace(10**(mag_min/20.0), 10**(mag_max/20.0), 2000)
Gcl_phases, Gcl_mags = sp.meshgrid(sp.radians(phases), mags)
return closed_loop_contours(Gcl_mags, Gcl_phases)
# Function aliases
示例13: plot_nullcline
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def plot_nullcline(self, nullc, style, lw=1, N=100, marker='', figname=None):
if not self.do_display:
return
self.setup(figname)
x_data = nullc.array[:,0]
y_data = nullc.array[:,1]
xs = np.sort( np.concatenate( (np.linspace(x_data[0], x_data[-1], N), x_data) ) )
ys = nullc.spline(xs)
pp.plot(xs, ys, style, linewidth=lw)
if marker != '':
pp.plot(x_data, y_data, style[0]+marker)
self.teardown()
示例14: plot_models
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def plot_models(x, y, models, fname, mx=None, ymax=None, xmin=None):
plt.figure(num=None, figsize=(8, 6))
plt.clf()
plt.scatter(x, y, s=10)
plt.title("Web traffic over the last month")
plt.xlabel("Time")
plt.ylabel("Hits/hour")
plt.xticks(
[w * 7 * 24 for w in range(10)], ['week %i' % w for w in range(10)])
if models:
if mx is None:
mx = sp.linspace(0, x[-1], 1000)
for model, style, color in zip(models, linestyles, colors):
# print "Model:",model
# print "Coeffs:",model.coeffs
plt.plot(mx, model(mx), linestyle=style, linewidth=2, c=color)
plt.legend(["d=%i" % m.order for m in models], loc="upper left")
plt.autoscale(tight=True)
plt.ylim(ymin=0)
if ymax:
plt.ylim(ymax=ymax)
if xmin:
plt.xlim(xmin=xmin)
plt.grid(True, linestyle='-', color='0.75')
plt.savefig(fname)
# first look at the data
開發者ID:PacktPublishing,項目名稱:Building-Machine-Learning-Systems-With-Python-Second-Edition,代碼行數:33,代碼來源:analyze_webstats.py
示例15: plotSoundWave
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import linspace [as 別名]
def plotSoundWave(rate, sample):
"""
Plots a given sound wave.
"""
t = scipy.linspace(0, 2, 2*rate, endpoint=False)
pylab.figure('Sound wave')
T = int(0.0001*rate)
pylab.plot(t[:T], sample[:T],)
pylab.show()