當前位置: 首頁>>代碼示例>>Python>>正文


Python fftpack.ifftshift方法代碼示例

本文整理匯總了Python中scipy.fftpack.ifftshift方法的典型用法代碼示例。如果您正苦於以下問題:Python fftpack.ifftshift方法的具體用法?Python fftpack.ifftshift怎麽用?Python fftpack.ifftshift使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.fftpack的用法示例。


在下文中一共展示了fftpack.ifftshift方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_numpy

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def get_numpy(shape, fftn_shape=None, **kwargs):
    import numpy.fft as numpy_fft

    f = {
        "fft2": numpy_fft.fft2,
        "ifft2": numpy_fft.ifft2,
        "rfft2": numpy_fft.rfft2,
        "irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
        "fftshift": numpy_fft.fftshift,
        "ifftshift": numpy_fft.ifftshift,
        "fftfreq": numpy_fft.fftfreq,
    }
    if fftn_shape is not None:
        f["fftn"] = numpy_fft.fftn
    fft = SimpleNamespace(**f)

    return fft 
開發者ID:pySTEPS,項目名稱:pysteps,代碼行數:19,代碼來源:fft.py

示例2: get_scipy

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def get_scipy(shape, fftn_shape=None, **kwargs):
    import numpy.fft as numpy_fft
    import scipy.fftpack as scipy_fft

    # use numpy implementation of rfft2/irfft2 because they have not been
    # implemented in scipy.fftpack
    f = {
        "fft2": scipy_fft.fft2,
        "ifft2": scipy_fft.ifft2,
        "rfft2": numpy_fft.rfft2,
        "irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
        "fftshift": scipy_fft.fftshift,
        "ifftshift": scipy_fft.ifftshift,
        "fftfreq": scipy_fft.fftfreq,
    }
    if fftn_shape is not None:
        f["fftn"] = scipy_fft.fftn
    fft = SimpleNamespace(**f)

    return fft 
開發者ID:pySTEPS,項目名稱:pysteps,代碼行數:22,代碼來源:fft.py

示例3: convolve

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def convolve(f, g):
    """
    FFT based convolution

    :param f: array
    :param g: array
    :return: array, (f * g)[n]
    """
    f_fft = fftpack.fftshift(fftpack.fftn(f))
    g_fft = fftpack.fftshift(fftpack.fftn(g))
    return fftpack.fftshift(fftpack.ifftn(fftpack.ifftshift(f_fft*g_fft))) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:13,代碼來源:math_op.py

示例4: deconvolve

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def deconvolve(f, g):
    """
    FFT based deconvolution

    :param f: array
    :param g: array
    :return: array,
    """
    f_fft = fftpack.fftshift(fftpack.fftn(f))
    g_fft = fftpack.fftshift(fftpack.fftn(g))
    return fftpack.fftshift(fftpack.ifftn(fftpack.ifftshift(f_fft/g_fft))) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:13,代碼來源:math_op.py

示例5: test_definition

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def test_definition(self):
        x = [0,1,2,3,4,-4,-3,-2,-1]
        y = [-4,-3,-2,-1,0,1,2,3,4]
        assert_array_almost_equal(fftshift(x),y)
        assert_array_almost_equal(ifftshift(y),x)
        x = [0,1,2,3,4,-5,-4,-3,-2,-1]
        y = [-5,-4,-3,-2,-1,0,1,2,3,4]
        assert_array_almost_equal(fftshift(x),y)
        assert_array_almost_equal(ifftshift(y),x) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_helper.py

示例6: test_inverse

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def test_inverse(self):
        for n in [1,4,9,100,211]:
            x = random((n,))
            assert_array_almost_equal(ifftshift(fftshift(x)),x) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:test_helper.py

示例7: test_inverse

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def test_inverse(self):
        for n in [1,4,9,100,211]:
            x = random.random((n,))
            assert_array_almost_equal(ifftshift(fftshift(x)),x) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_helper.py

示例8: generate_fractal_surface

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def generate_fractal_surface(self, G):
        """Generate a 2D array with a fractal distribution.

        Args:
            G (class): Grid class instance - holds essential parameters describing the model.
        """

        if self.xs == self.xf:
            surfacedims = (self.ny, self.nz)
        elif self.ys == self.yf:
            surfacedims = (self.nx, self.nz)
        elif self.zs == self.zf:
            surfacedims = (self.nx, self.ny)

        self.fractalsurface = np.zeros(surfacedims, dtype=complextype)

        # Positional vector at centre of array, scaled by weighting
        v1 = np.array([self.weighting[0] * (surfacedims[0]) / 2, self.weighting[1] * (surfacedims[1]) / 2])

        # 2D array of random numbers to be convolved with the fractal function
        R = np.random.RandomState(self.seed)
        A = R.randn(surfacedims[0], surfacedims[1])

        # 2D FFT
        A = fftpack.fftn(A)
        # Shift the zero frequency component to the centre of the array
        A = fftpack.fftshift(A)

        # Generate fractal
        generate_fractal2D(surfacedims[0], surfacedims[1], G.nthreads, self.b, self.weighting, v1, A, self.fractalsurface)

        # Shift the zero frequency component to start of the array
        self.fractalsurface = fftpack.ifftshift(self.fractalsurface)
        # Take the real part (numerical errors can give rise to an imaginary part) of the IFFT
        self.fractalsurface = np.real(fftpack.ifftn(self.fractalsurface))
        # Scale the fractal volume according to requested range
        fractalmin = np.amin(self.fractalsurface)
        fractalmax = np.amax(self.fractalsurface)
        fractalrange = fractalmax - fractalmin
        self.fractalsurface = self.fractalsurface * ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) \
            + self.fractalrange[0] - ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) * fractalmin 
開發者ID:gprMax,項目名稱:gprMax,代碼行數:43,代碼來源:fractals.py

示例9: two_point_correlation_fft

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def two_point_correlation_fft(im):
    r"""
    Calculates the two-point correlation function using fourier transforms

    Parameters
    ----------
    im : ND-array
        The image of the void space on which the 2-point correlation is desired

    Returns
    -------
    result : named_tuple
        A tuple containing the x and y data for plotting the two-point
        correlation function, using the *args feature of matplotlib's plot
        function.  The x array is the distances between points and the y array
        is corresponding probabilities that points of a given distance both
        lie in the void space.

    Notes
    -----
    The fourier transform approach utilizes the fact that the autocorrelation
    function is the inverse FT of the power spectrum density.
    For background read the Scipy fftpack docs and for a good explanation see:
    http://www.ucl.ac.uk/~ucapikr/projects/KamilaSuankulova_BSc_Project.pdf
    """
    # Calculate half lengths of the image
    hls = (np.ceil(np.shape(im))/2).astype(int)
    # Fourier Transform and shift image
    F = sp_ft.ifftshift(sp_ft.fftn(sp_ft.fftshift(im)))
    # Compute Power Spectrum
    P = np.absolute(F**2)
    # Auto-correlation is inverse of Power Spectrum
    autoc = np.absolute(sp_ft.ifftshift(sp_ft.ifftn(sp_ft.fftshift(P))))
    tpcf = _radial_profile(autoc, r_max=np.min(hls))
    return tpcf 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:37,代碼來源:__funcs__.py

示例10: convolve

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def convolve(arr1, arr2, dx=None, axes=None):
    """
    Performs a centred convolution of input arrays

    Parameters
    ----------
    arr1, arr2 : `numpy.ndarray`
        Arrays to be convolved. If dimensions are not equal then 1s are appended
        to the lower dimensional array. Otherwise, arrays must be broadcastable.
    dx : float > 0, list of float, or `None` , optional
        Grid spacing of input arrays. Output is scaled by
        `dx**max(arr1.ndim, arr2.ndim)`. default=`None` applies no scaling
    axes : tuple of ints or `None`, optional
        Choice of axes to convolve. default=`None` convolves all axes

    """
    if arr2.ndim > arr1.ndim:
        arr1, arr2 = arr2, arr1
        if axes is None:
            axes = range(arr2.ndim)
    arr2 = arr2.reshape(arr2.shape + (1,) * (arr1.ndim - arr2.ndim))

    if dx is None:
        dx = 1
    elif isscalar(dx):
        dx = dx ** (len(axes) if axes is not None else arr1.ndim)
    else:
        dx = prod(dx)

    arr1 = fftn(arr1, axes=axes)
    arr2 = fftn(ifftshift(arr2), axes=axes)
    out = ifftn(arr1 * arr2, axes=axes) * dx
    return require(out, requirements="CA") 
開發者ID:pyxem,項目名稱:diffsims,代碼行數:35,代碼來源:fourier_transform.py

示例11: _slp_filter

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def _slp_filter(phase, cutoff, rows, cols, x_size, y_size, params):
    """
    Function to perform spatial low pass filter
    """
    cx = np.floor(cols/2)
    cy = np.floor(rows/2)
    # fft for the input image
    imf = fftshift(fft2(phase))
    # calculate distance
    distfact = 1.0e3  # to convert into meters
    [xx, yy] = np.meshgrid(range(cols), range(rows))
    xx = (xx - cx) * x_size  # these are in meters as x_size in meters
    yy = (yy - cy) * y_size
    dist = np.sqrt(xx ** 2 + yy ** 2)/distfact  # km

    if params[cf.SLPF_METHOD] == 1:  # butterworth low pass filter
        H = 1. / (1 + ((dist / cutoff) ** (2 * params[cf.SLPF_ORDER])))
    else:  # Gaussian low pass filter
        H = np.exp(-(dist ** 2) / (2 * cutoff ** 2))
    outf = imf * H
    out = np.real(ifft2(ifftshift(outf)))
    out[np.isnan(phase)] = np.nan
    return out  # out is units of phase, i.e. mm


# TODO: use tiles here and distribute amongst processes 
開發者ID:GeoscienceAustralia,項目名稱:PyRate,代碼行數:28,代碼來源:aps.py

示例12: generate_fractal_volume

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import ifftshift [as 別名]
def generate_fractal_volume(self, G):
        """Generate a 3D volume with a fractal distribution.

        Args:
            G (class): Grid class instance - holds essential parameters describing the model.
        """

        # Scale filter according to size of fractal volume
        if self.nx == 1:
            filterscaling = np.amin(np.array([self.ny, self.nz])) / np.array([self.ny, self.nz])
            filterscaling = np.insert(filterscaling, 0, 1)
        elif self.ny == 1:
            filterscaling = np.amin(np.array([self.nx, self.nz])) / np.array([self.nx, self.nz])
            filterscaling = np.insert(filterscaling, 1, 1)
        elif self.nz == 1:
            filterscaling = np.amin(np.array([self.nx, self.ny])) / np.array([self.nx, self.ny])
            filterscaling = np.insert(filterscaling, 2, 1)
        else:
            filterscaling = np.amin(np.array([self.nx, self.ny, self.nz])) / np.array([self.nx, self.ny, self.nz])

        # Adjust weighting to account for filter scaling
        self.weighting = np.multiply(self.weighting, filterscaling)

        self.fractalvolume = np.zeros((self.nx, self.ny, self.nz), dtype=complextype)

        # Positional vector at centre of array, scaled by weighting
        v1 = np.array([self.weighting[0] * self.nx / 2, self.weighting[1] * self.ny / 2, self.weighting[2] * self.nz / 2])

        # 3D array of random numbers to be convolved with the fractal function
        R = np.random.RandomState(self.seed)
        A = R.randn(self.nx, self.ny, self.nz)

        # 3D FFT
        A = fftpack.fftn(A)
        # Shift the zero frequency component to the centre of the array
        A = fftpack.fftshift(A)

        # Generate fractal
        generate_fractal3D(self.nx, self.ny, self.nz, G.nthreads, self.b, self.weighting, v1, A, self.fractalvolume)

        # Shift the zero frequency component to the start of the array
        self.fractalvolume = fftpack.ifftshift(self.fractalvolume)
        # Take the real part (numerical errors can give rise to an imaginary part) of the IFFT
        self.fractalvolume = np.real(fftpack.ifftn(self.fractalvolume))
        # Bin fractal values
        bins = np.linspace(np.amin(self.fractalvolume), np.amax(self.fractalvolume), self.nbins)
        for j in range(self.ny):
            for k in range(self.nz):
                self.fractalvolume[:, j, k] = np.digitize(self.fractalvolume[:, j, k], bins, right=True) 
開發者ID:gprMax,項目名稱:gprMax,代碼行數:51,代碼來源:fractals.py


注:本文中的scipy.fftpack.ifftshift方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。