本文整理匯總了Python中scipy.cos方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.cos方法的具體用法?Python scipy.cos怎麽用?Python scipy.cos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.cos方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pix2vert
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import cos [as 別名]
def pix2vert(nside,ipix,nest=False):
"""
NAME:
pix2vert
PURPOSE:
calculate the locations of the vertices (theta,phi)
of a given HEALPix pixel
INPUT:
nside - HEALPix resolution parameter
ipix - pixel number
nest - if True, use NESTED scheme (default: RING)
OUTPUT:
numpy.array([4,2]) theta,phi [rad] NWSE
HISTORY:
2010-01-21 - Written - Bovy (NYU)
"""
(centerTheta,centerPhi)= healpy.pix2ang(nside,ipix,nest=nest)
#Are we in the polar regime or in the equatorial regime?
z= sc.cos(centerTheta)
if z > -2./3. and z < 2./3.:
return bovy_healpy._ang2vert_eq(nside,centerTheta,centerPhi,z)
else:
return bovy_healpy._ang2vert(nside,centerTheta,centerPhi,z)
示例2: coszen
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import cos [as 別名]
def coszen(self):
""" Return the cosine of the solar zenith."""
self.dt = self.datetime
az, zen, ra, dec, h = sunpos(self.datetime, self.latitude,
self.longitudeE,
self.surface_elevation_km * 1000.0,
radians=True)
return s.cos(zen)
示例3: spherical_integral
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import cos [as 別名]
def spherical_integral(C,rho):
"""
Calculate the integral of a function over a unit sphere.
"""
# phi - azimuthal angle (angle in xy-plane)
# theta - polar angle (angle between z and xy-plane)
# ( y , x )
def func(theta,phi,C,rho): # Test function. Can I get 4*pi^2????
x = sp.cos(phi)*sp.sin(theta)
y = sp.sin(phi)*sp.sin(theta)
z = sp.cos(theta)
#dir = sp.array((x,y,z))
#dc = dir_cosines(dir)
dc = sp.array((x,y,z)) # Turns out these are direction cosines!
Gamma = make_gamma(dc,C)
rho_c_square = linalg.eigvals(Gamma).real # GPa
rho_c_square = rho_c_square*1e9 # Pa
sound_vel = sp.sqrt(rho_c_square/rho) # m/s
integrand = 1/(sound_vel[0]**3) + 1/(sound_vel[1]**3) + 1/(sound_vel[2]**3)
return integrand*sp.sin(theta)
# ( y , x )
#def sfunc(theta,phi,args=()):
# return func(theta,phi,args)*sp.sin(theta)
integral,error = dblquad(func,0,2*sp.pi,lambda g: 0,lambda h:
sp.pi,args=(C,rho))
return integral
#direction = sp.array((1.0,1.0,1.0))
#dc = dir_cosines(direction)
#C = read_file.read_file(sys.argv[1])
#C.pop(0)
#C = sp.array(C,float)
#Gamma = make_gamma(dc,C)
#density = 7500 #kg/m**3
#density = float(read_file.read_file(sys.argv[2])[0][0])
#rho_c_square = linalg.eigvals(Gamma) #GPa
#rho_c_square = rho_c_square*1e9 #Pa
#sound_vel = sp.sqrt(rho_c_square/density).real
#avg_vel = sp.average(sound_vel)
#print Gamma
#print direction
#print C
#print rho_c_square
#print rho_c_square.real
#print sound_vel," in m/s"
#print avg_vel
#print spherical_integral(C,density)