當前位置: 首頁>>代碼示例>>Python>>正文


Python random.gauss方法代碼示例

本文整理匯總了Python中random.gauss方法的典型用法代碼示例。如果您正苦於以下問題:Python random.gauss方法的具體用法?Python random.gauss怎麽用?Python random.gauss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在random的用法示例。


在下文中一共展示了random.gauss方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_value

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def init_value(self, config):
        mean = getattr(config, self.init_mean_name)
        stdev = getattr(config, self.init_stdev_name)
        init_type = getattr(config, self.init_type_name).lower()

        if ('gauss' in init_type) or ('normal' in init_type):
            return self.clamp(gauss(mean, stdev), config)

        if 'uniform' in init_type:
            min_value = max(getattr(config, self.min_value_name),
                            (mean - (2 * stdev)))
            max_value = min(getattr(config, self.max_value_name),
                            (mean + (2 * stdev)))
            return uniform(min_value, max_value)

        raise RuntimeError("Unknown init_type {!r} for {!s}".format(getattr(config,
                                                                            self.init_type_name),
                                                                    self.init_type_name)) 
開發者ID:CodeReclaimers,項目名稱:neat-python,代碼行數:20,代碼來源:attributes.py

示例2: _add_replicates

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def _add_replicates(self, list_population, mu, sigma):
		"""
			Adding gaussian noise to the first drawn abundances

			@attention:

			@param list_population: Main list for all distributions
			@type : list[list[float]]
			@param mu: Mean
			@type mu: float
			@param sigma: standard deviation
			@type sigma: float

			@return: Nothing
			@rtype: None
		"""
		assert isinstance(list_population, list)
		assert isinstance(mu, (float, int, long))
		assert isinstance(sigma, (float, int, long))
		for index_p in xrange(len(list_population)):
			initial_log_distribution = list_population[index_p][0]
			for index_i in xrange(len(list_population[index_p])-1):
				list_population[index_p][index_i+1] = self.lt_zero(initial_log_distribution + random.gauss(mu, sigma)) 
開發者ID:CAMI-challenge,項目名稱:CAMISIM,代碼行數:25,代碼來源:populationdistribution.py

示例3: mutate_value

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def mutate_value(self, value, config):
        # mutate_rate is usually no lower than replace_rate, and frequently higher -
        # so put first for efficiency
        mutate_rate = getattr(config, self.mutate_rate_name)

        r = random()
        if r < mutate_rate:
            mutate_power = getattr(config, self.mutate_power_name)
            return self.clamp(value + gauss(0.0, mutate_power), config)

        replace_rate = getattr(config, self.replace_rate_name)

        if r < replace_rate + mutate_rate:
            return self.init_value(config)

        return value 
開發者ID:CodeReclaimers,項目名稱:neat-python,代碼行數:18,代碼來源:attributes.py

示例4: data

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def data():
        while True:
            x = random.uniform(0, 10)
            y = random.uniform(0, 10)
            if x < 4.0:
                if y < 6.0:
                    z = random.gauss(5, 1)
                else:
                    z = random.gauss(8, 1)
            else:
                if y < 2.0:
                    z = random.gauss(1, 1)
                else:
                    z = random.gauss(2, 1)
            if z < 0.0:
                z = 0.0
            elif z >= 10.0:
                z = 9.99999

            a = "A" + str(int(x))
            b = "B" + str(int(y/2) * 2)
            c = "C" + str(int(z/3) * 3)

            yield (x, y, z, a, b, c) 
開發者ID:modelop,項目名稱:hadrian,代碼行數:26,代碼來源:testCart.py

示例5: splitter

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def splitter():
    splitField = ["ra", "dec", "dist", "mag", "absmag", "x", "y", "z", "vx", "vy", "vz"][random.randint(0, 10)]
    if splitField == "ra":
        splitValue = random.uniform(1, 23)
    elif splitField == "dec":
        splitValue = random.uniform(-87, 87)
    elif splitField == "dist":
        splitValue = math.exp(random.gauss(5.5, 1))
    elif splitField == "mag":
        splitValue = random.gauss(8, 1)
    elif splitField == "absmag":
        splitValue = random.gauss(2, 2)
    elif splitField == "x":
        splitValue = math.exp(random.gauss(5, 1)) * (1 if random.randint(0, 1) == 1 else -1)
    elif splitField == "y":
        splitValue = math.exp(random.gauss(5, 1)) * (1 if random.randint(0, 1) == 1 else -1)
    elif splitField == "z":
        splitValue = math.exp(random.gauss(5, 1)) * (1 if random.randint(0, 1) == 1 else -1)
    elif splitField == "vx":
        splitValue = math.exp(random.gauss(-12, 1)) * (1 if random.randint(0, 1) == 1 else -1)
    elif splitField == "vy":
        splitValue = math.exp(random.gauss(-12, 1)) * (1 if random.randint(0, 1) == 1 else -1)
    elif splitField == "vz":
        splitValue = math.exp(random.gauss(-12, 1)) * (1 if random.randint(0, 1) == 1 else -1)
    return splitField, splitValue 
開發者ID:modelop,項目名稱:hadrian,代碼行數:27,代碼來源:hipparcos_segmented_prepare.py

示例6: find_paste_location

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def find_paste_location(self, bbox, already_pasted_bboxes):

        while True:
            x_derivation = random.gauss(0, self.variance) * (self.image_size // 2)
            y_derivation = random.gauss(0, self.variance) * (self.image_size // 2)
            center = Point(x=self.image_size // 2, y=self.image_size // 2)

            bbox.left = max(min(center.x + x_derivation, self.image_size), 0)
            bbox.top = max(min(center.y + y_derivation, self.image_size), 0)

            if bbox.left + bbox.width > self.image_size:
                bbox.left = self.image_size - bbox.width
            if bbox.top + bbox.height > self.image_size:
                bbox.top = self.image_size - bbox.height

            if not any(intersects(bbox, box) for box in already_pasted_bboxes):
                return bbox 
開發者ID:Bartzi,項目名稱:stn-ocr,代碼行數:19,代碼來源:create_svhn_dataset.py

示例7: _fix

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def _fix(self, n=0):
        o = random.choice(self.objlist)
        if issubclass(o, ASN1_INTEGER):
            return o(int(random.gauss(0,1000)))
        elif issubclass(o, ASN1_IPADDRESS):
            z = RandIP()._fix()
            return o(z)
        elif issubclass(o, ASN1_STRING):
            z = int(random.expovariate(0.05)+1)
            return o("".join([random.choice(self.chars) for i in range(z)]))
        elif issubclass(o, ASN1_SEQUENCE) and (n < 10):
            z = int(random.expovariate(0.08)+1)
            return o(map(lambda x:x._fix(n+1), [self.__class__(objlist=self.objlist)]*z))
        return ASN1_INTEGER(int(random.gauss(0,1000)))


##############
#### ASN1 ####
############## 
開發者ID:medbenali,項目名稱:CyberScan,代碼行數:21,代碼來源:asn1.py

示例8: gaussian_distribution

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def gaussian_distribution(mean: float, std_dev: float, instance_count: int) -> list:
    """
    Generate gaussian distribution instances based-on given mean and standard deviation
    :param mean: mean value of class
    :param std_dev: value of standard deviation entered by usr or default value of it
    :param instance_count: instance number of class
    :return: a list containing generated values based-on given mean, std_dev and
        instance_count

    >>> gaussian_distribution(5.0, 1.0, 20) # doctest: +NORMALIZE_WHITESPACE
    [6.288184753155463, 6.4494456086997705, 5.066335808938262, 4.235456349028368,
     3.9078267848958586, 5.031334516831717, 3.977896829989127, 3.56317055489747,
      5.199311976483754, 5.133374604658605, 5.546468300338232, 4.086029056264687,
       5.005005283626573, 4.935258239627312, 3.494170998739258, 5.537997178661033,
        5.320711100998849, 7.3891120432406865, 5.202969177309964, 4.855297691835079]
    """
    seed(1)
    return [gauss(mean, std_dev) for _ in range(instance_count)]


# Make corresponding Y flags to detecting classes 
開發者ID:TheAlgorithms,項目名稱:Python,代碼行數:23,代碼來源:linear_discriminant_analysis.py

示例9: __call__

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def __call__(self, img):
        img = torch.Tensor(np.array(img))
        # Transform from HWC to CHW
        img = img.permute(2, 0 ,1)
        return img
        alpha0 = random.gauss(sigma=0.1, mu=0)
        alpha1 = random.gauss(sigma=0.1, mu=0)
        alpha2 = random.gauss(sigma=0.1, mu=0)

        channels = alpha0*self.eigval[0]*self.eigvec[0, :] + \
                   alpha1*self.eigval[1]*self.eigvec[1, :] + \
                   alpha2*self.eigval[2]*self.eigvec[2, :]
        channels = channels.view(3, 1, 1)
        img += channels

        return img 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:18,代碼來源:utils.py

示例10: generate_reports

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def generate_reports(task, n_reports, with_gauss, **kwargs):
    reports = []

    if with_gauss:
        n_reports = abs(int(gauss(n_reports, 1)))
        if n_reports == 0:
            n_reports += 1

    for _ in range(n_reports):
        if with_gauss:
            n_results = abs(int(gauss(n_results, 2)))

        report_elem = generate_report_elem(task, **kwargs)
        report_elem = e.tostring(report_elem)
        reports.append(report_elem)

    return reports 
開發者ID:greenbone,項目名稱:gvm-tools,代碼行數:19,代碼來源:random-report-gen.gmp.py

示例11: check_args

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def check_args(args):
    len_args = len(args.script) - 1
    if len_args < 2:
        message = """
        This script generates random task data and feeds it to\
    a desired GSM
        It needs two parameters after the script name.

        1. <host_number> -- number of dummy hosts to select from
        2. <number>      -- number of targets to be generated

        In addition, if you would like for the number of targets generated
    to be randomized on a Gaussian distribution, add 'with-gauss'

        Example:
            $ gvm-script --gmp-username name --gmp-password pass \
    ssh --hostname <gsm> scripts/gen-random-targets.gmp.py 3 40 with-gauss
        """
        print(message)
        quit() 
開發者ID:greenbone,項目名稱:gvm-tools,代碼行數:22,代碼來源:gen-random-targets.gmp.py

示例12: gaussian

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def gaussian(mean, sigma, trim_at_zero=True):
    sample = random.gauss(mean, sigma)
    if trim_at_zero:
        if sample < 0:
            sample *= -1
    return sample 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:8,代碼來源:utils.py

示例13: get_new_height

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def get_new_height(self):
        """
        Calculate the height of my child.
        We use parent_height to generate reversion to the mean.
        """
        mu = (self.height + self.parent_height) / 2
        new_height = random.gauss(mu, mu / CHILD_HEIGHT_VAR)
        return new_height 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:10,代碼來源:height.py

示例14: sell_car

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def sell_car(dealer):
    car_life = random.gauss(dealer.attrs["avg_car_life"], CAR_LIFE_SIGMA)
    return constrain_car_life(car_life) 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:5,代碼來源:dealer_factory.py

示例15: get_tolerance

# 需要導入模塊: import random [as 別名]
# 或者: from random import gauss [as 別名]
def get_tolerance(default_tolerance, sigma):
    """
    `tolerance` measures how *little* of one's own group one will
    tolerate being among.
    """
    tol = random.gauss(default_tolerance, sigma)
    # a low tolerance number here means high tolerance!
    tol = min(tol, MAX_TOL)
    tol = max(tol, MIN_TOL)
    return tol 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:12,代碼來源:segregation.py


注:本文中的random.gauss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。