本文整理匯總了Python中pylab.ylim方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.ylim方法的具體用法?Python pylab.ylim怎麽用?Python pylab.ylim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.ylim方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_lines_dists
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def test_lines_dists():
import pylab
ax = pylab.gca()
xs, ys = (0,30), (20,150)
pylab.plot(xs, ys)
points = list(zip(xs, ys))
p0, p1 = points
xs, ys = (0,0,20,30), (100,150,30,200)
pylab.scatter(xs, ys)
dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
for x, y, d in zip(xs, ys, dist):
c = Circle((x, y), d, fill=0)
ax.add_patch(c)
pylab.xlim(-200, 200)
pylab.ylim(-200, 200)
pylab.show()
示例2: test_proj
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def test_proj():
import pylab
M = test_proj_make_M()
ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
[0,0,0,0,0, 1,1,1,1,1]
xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
#
test_proj_draw_axes(M, s=400)
txs, tys, tzs = proj_transform(xs, ys, zs, M)
ixs, iys, izs = inv_transform(txs, tys, tzs, M)
pylab.scatter(txs, tys, c=tzs)
pylab.plot(txs, tys, c='r')
for x, y, t in zip(txs, tys, ts):
pylab.text(x, y, t)
pylab.xlim(-0.2, 0.2)
pylab.ylim(-0.2, 0.2)
pylab.show()
示例3: plot_roc_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例4: test_lines_dists
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def test_lines_dists():
import pylab
ax = pylab.gca()
xs, ys = (0,30), (20,150)
pylab.plot(xs, ys)
points = zip(xs, ys)
p0, p1 = points
xs, ys = (0,0,20,30), (100,150,30,200)
pylab.scatter(xs, ys)
dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
for x, y, d in zip(xs, ys, dist):
c = Circle((x, y), d, fill=0)
ax.add_patch(c)
pylab.xlim(-200, 200)
pylab.ylim(-200, 200)
pylab.show()
示例5: plot_Geweke
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plot_Geweke(parameterdistribution,parametername):
'''Input: Takes a list of sampled values for a parameter and his name as a string
Output: Plot as seen for e.g. in BUGS or PyMC'''
import matplotlib.pyplot as plt
# perform the Geweke test
Geweke_values = _Geweke(parameterdistribution)
# plot the results
fig = plt.figure()
plt.plot(Geweke_values,label=parametername)
plt.legend()
plt.title(parametername + '- Geweke_Test')
plt.xlabel('Subinterval')
plt.ylabel('Geweke Test')
plt.ylim([-3,3])
# plot the delimiting line
plt.plot( [2]*len(Geweke_values), 'r-.')
plt.plot( [-2]*len(Geweke_values), 'r-.')
示例6: _plot_background
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def _plot_background(self, bgimage):
import pylab as pl
# Show the portion of the image behind this facade
left, right = self.facade_left, self.facade_right
top, bottom = 0, self.mega_facade.rectified.shape[0]
if bgimage is not None:
pl.imshow(bgimage[top:bottom, left:right], extent=(left, right, bottom, top))
else:
# Fit the facade in the plot
y0, y1 = pl.ylim()
x0, x1 = pl.xlim()
x0 = min(x0, left)
x1 = max(x1, right)
y0 = min(y0, top)
y1 = max(y1, bottom)
pl.xlim(x0, x1)
pl.ylim(y1, y0)
示例7: plot_rectified
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plot_rectified(self):
import pylab
pylab.title('rectified')
pylab.imshow(self.rectified)
for line in self.vlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例8: plot_original
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plot_original(self):
import pylab
pylab.title('original')
pylab.imshow(self.data)
for line in self.lines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)
for line in self.vlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例9: plot_CDR_correlation
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plot_CDR_correlation(self, doplot=True):
"""
Displays correlation between sampling time points and CDR. It returns the two
parameters of the linear fit, Pearson's r, p-value and standard error. If optional argument 'doplot' is
False, the plot is not displayed.
"""
pel2, tol = self.get_gene(self.rootlane, ignore_log=True)
pel = numpy.array([pel2[m] for m in self.pl])*tol
dr2 = self.get_gene('_CDR')[0]
dr = numpy.array([dr2[m] for m in self.pl])
po = scipy.stats.linregress(pel, dr)
if doplot:
pylab.scatter(pel, dr, s=9.0, alpha=0.7, c='r')
pylab.xlim(min(pel), max(pel))
pylab.ylim(0, max(dr)*1.1)
pylab.xlabel(self.rootlane)
pylab.ylabel('CDR')
xk = pylab.linspace(min(pel), max(pel), 50)
pylab.plot(xk, po[1]+po[0]*xk, 'k--', linewidth=2.0)
pylab.show()
return po
示例10: plot_barchart
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plot_barchart(self, data, labels, colors, xlabel, ylabel, xticks, legendloc=1):
self.big_figure()
index = np.arange(len(data[0][0]))
bar_width = 0.25
pylab.grid("on", axis='y')
pylab.ylim([0.5, 1.0])
for i in range(0, len(data)):
rects = pylab.bar(bar_width / 2 + index + (i * bar_width), data[i][0], bar_width,
alpha=0.5, color=colors[i],
yerr=data[i][1],
error_kw={'ecolor': '0.3'},
label=labels[i])
pylab.legend(loc=legendloc, prop={'size': 12})
pylab.xlabel(xlabel)
pylab.ylabel(ylabel)
pylab.xticks(bar_width / 2 + index + ((bar_width * (len(data[0]) + 1)) / len(data[0])), xticks)
示例11: addqqplotinfo
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def addqqplotinfo(qnull,M,xl='-log10(P) observed',yl='-log10(P) expected',xlim=None,ylim=None,alphalevel=0.05,legendlist=None,fixaxes=False):
distr='log10'
pl.plot([0,qnull.max()], [0,qnull.max()],'k')
pl.ylabel(xl)
pl.xlabel(yl)
if xlim is not None:
pl.xlim(xlim)
if ylim is not None:
pl.ylim(ylim)
if alphalevel is not None:
if distr == 'log10':
betaUp, betaDown, theoreticalPvals = _qqplot_bar(M=M,alphalevel=alphalevel,distr=distr)
lower = -sp.log10(theoreticalPvals-betaDown)
upper = -sp.log10(theoreticalPvals+betaUp)
pl.fill_between(-sp.log10(theoreticalPvals),lower,upper,color="grey",alpha=0.5)
#pl.plot(-sp.log10(theoreticalPvals),lower,'g-.')
#pl.plot(-sp.log10(theoreticalPvals),upper,'g-.')
if legendlist is not None:
leg = pl.legend(legendlist, loc=4, numpoints=1)
# set the markersize for the legend
for lo in leg.legendHandles:
lo.set_markersize(10)
if fixaxes:
fix_axes()
示例12: i1RepeatNucleotides
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def i1RepeatNucleotides(data, label=''):
merged_data = mergeWithIndelData(data)
nt_mean_percs, nts = [], ['A','T','G','C']
for nt in nts:
nt_data = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]
nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb']*100.0/nt_data['Total reads']).mean())
PL.figure(figsize=(3,3))
PL.bar(range(4),nt_mean_percs)
for i in range(4):
PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
PL.xticks(range(4),nts)
PL.ylim((0,26))
PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
PL.show(block=False)
saveFig('i1_rtp_nt_%s' % label)
示例13: plotMergedI1Repeats
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plotMergedI1Repeats(all_result_outputs, label=''):
merged_data = mergeSamples(all_result_outputs, ['I1_Rpt Left Reads - NonAmb','Total reads'], data_label='i1IndelData', merge_on=['Oligo Id','Repeat Nucleotide Left'])
nt_mean_percs, nts = [], ['A','T','G','C']
for nt in nts:
nt_data = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]
nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb Sum']*100.0/nt_data['Total reads Sum']).mean())
PL.figure(figsize=(3,3))
PL.bar(range(4),nt_mean_percs)
for i in range(4):
PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
PL.xticks(range(4),nts)
PL.ylim((0,26))
PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
PL.show(block=False)
saveFig('i1_rtp_nt')
示例14: compareMHK562lines
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def compareMHK562lines(all_result_outputs, label='', y_axis = 'Percent Non-Null Reads', data_label='RegrLines'):
dirnames = [x[1] for x in all_result_outputs]
clrs = ['silver','grey','darkgreen','green','lightgreen','royalblue','dodgerblue','skyblue','mediumpurple','orchid','red','orange','salmon']
fig = PL.figure(figsize=(6,6))
leg_handles = []
mh_lens = [3,4,5,6,7,8,9,10,11,12,13,14,15]
for mh_len, clr in zip(mh_lens,clrs):
regr_lines = [x[0][data_label][mh_len] for x in all_result_outputs]
mean_line = np.mean([x[:2] for x in regr_lines], axis=0)
leg_handles.append(PL.plot(mean_line[0], mean_line[1], label='MH Len=%d (R=%.1f)' % (mh_len,np.mean([x[2] for x in regr_lines])) , linewidth=2, color=clr )[0])
PL.xlabel('Distance between nearest ends of\nmicrohomologous sequences',fontsize=16)
PL.ylabel('Correspondng microhomology-mediated deletion\n as percent of total mutated reads',fontsize=16)
PL.tick_params(labelsize=16)
PL.legend(handles=[x for x in reversed(leg_handles)], loc='upper right')
PL.ylim((0,80))
PL.xlim((0,20))
PL.xticks(range(0,21,5))
PL.show(block=False)
saveFig('mh_regr_lines_K562')
示例15: plotInFrameCorr
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import ylim [as 別名]
def plotInFrameCorr(data):
shi_data = pd.read_csv(getHighDataDir() + '/shi_deepseq_frame_shifts.txt',sep='\t')
label1, label2 = 'New In Frame Perc', 'Predicted In Frame Per'
PL.figure(figsize=(4,4))
xdata, ydata = data[label1], data[label2]
PL.plot(xdata,ydata, '.',alpha=0.15)
PL.plot(shi_data['Measured Frame Shift'], shi_data['Predicted Frame Shift'], '^', color='orange')
for x,y,id in zip(shi_data['Measured Frame Shift'], shi_data['Predicted Frame Shift'],shi_data['ID']):
if x-y > 10:
PL.text(x,y,id.split('/')[1][:-21])
PL.plot([0,100],[0,100],'k--')
PL.title('R=%.3f' % (pearsonr(xdata, ydata)[0]))
PL.xlabel('percent in frame mutations (measured)')
PL.ylabel('percent in frame mutations (predicted)')
PL.ylim((0,80))
PL.xlim((0,80))
PL.show(block=False)
saveFig('in_frame_corr_%s_%s' % (label1.replace(' ','_'),label2.replace(' ','_')))