本文整理匯總了Python中pylab.hold方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.hold方法的具體用法?Python pylab.hold怎麽用?Python pylab.hold使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.hold方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: solid_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import hold [as 別名]
def solid_plot():
# reference values, see
sref=0.0924102
wref=0.000170152
# List of the element types to process (text files)
eltyps=["C3D8",
"C3D8R",
"C3D8I",
"C3D20",
"C3D20R",
"C3D4",
"C3D10"]
pylab.figure(figsize=(10, 5.0), dpi=100)
pylab.subplot(1,2,1)
pylab.title("Stress")
# pylab.hold(True) # deprecated
for elty in eltyps:
data = numpy.genfromtxt(elty+".txt")
pylab.plot(data[:,1],data[:,2]/sref,"o-")
pylab.xscale("log")
pylab.xlabel('Number of nodes')
pylab.ylabel('Max $\sigma / \sigma_{\mathrm{ref}}$')
pylab.grid(True)
pylab.subplot(1,2,2)
pylab.title("Displacement")
# pylab.hold(True) # deprecated
for elty in eltyps:
data = numpy.genfromtxt(elty+".txt")
pylab.plot(data[:,1],data[:,3]/wref,"o-")
pylab.xscale("log")
pylab.xlabel('Number of nodes')
pylab.ylabel('Max $u / u_{\mathrm{ref}}$')
pylab.ylim([0,1.2])
pylab.grid(True)
pylab.legend(eltyps,loc="lower right")
pylab.tight_layout()
pylab.savefig("solid.svg",format="svg")
# pylab.show()
# Move new files and folders to 'Refs'
示例2: _test_graph
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import hold [as 別名]
def _test_graph():
i = 10000
x = np.linspace(0,3.7*pi,i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
y *= -1
x = range(i)
_max, _min = peakdetect(y,x,750, 0.30)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
plot = pylab.plot(x,y)
pylab.hold(True)
pylab.plot(xm, ym, 'r+')
pylab.plot(xn, yn, 'g+')
_max, _min = peak_det_bad.peakdetect(y, 0.7, x)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
pylab.plot(xm, ym, 'y*')
pylab.plot(xn, yn, 'k*')
pylab.show()
示例3: peakdetect_parabole
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import hold [as 別名]
def peakdetect_parabole(y_axis, x_axis, points = 9):
"""
Function for detecting local maximas and minmias in a signal.
Discovers peaks by fitting the model function: y = k (x - tau) ** 2 + m
to the peaks. The amount of points used in the fitting is set by the
points argument.
Omitting the x_axis is forbidden as it would make the resulting x_axis
value silly if it was returned as index 50.234 or similar.
will find the same amount of peaks as the 'peakdetect_zero_crossing'
function, but might result in a more precise value of the peak.
keyword arguments:
y_axis -- A list containg the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the postion of the peaks.
points -- (optional) How many points around the peak should be used during
curve fitting, must be odd (default: 9)
return -- two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a list
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
# make the points argument odd
points += 1 - points % 2
#points += 1 - int(points) & 1 slower when int conversion needed
# get raw peaks
max_raw, min_raw = peakdetect_zero_crossing(y_axis)
# define output variable
max_peaks = []
min_peaks = []
max_ = _peakdetect_parabole_fitter(max_raw, x_axis, y_axis, points)
min_ = _peakdetect_parabole_fitter(min_raw, x_axis, y_axis, points)
max_peaks = map(lambda x: [x[0], x[1]], max_)
max_fitted = map(lambda x: x[-1], max_)
min_peaks = map(lambda x: [x[0], x[1]], min_)
min_fitted = map(lambda x: x[-1], min_)
#pylab.plot(x_axis, y_axis)
#pylab.hold(True)
#for max_p, max_f in zip(max_peaks, max_fitted):
# pylab.plot(max_p[0], max_p[1], 'x')
# pylab.plot(max_f[0], max_f[1], 'o', markersize = 2)
#for min_p, min_f in zip(min_peaks, min_fitted):
# pylab.plot(min_p[0], min_p[1], 'x')
# pylab.plot(min_f[0], min_f[1], 'o', markersize = 2)
#pylab.show()
return [max_peaks, min_peaks]
示例4: plot_item
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import hold [as 別名]
def plot_item(self, m, ind, x, r, k, label, U, scores):
"""plot_item(self, m, ind, x, r, k, label, U, scores)
Plot selection m (index ind, data in x) and its reconstruction r,
with k and label to annotate the plot.
U and scores are optional; ignored in this method, used in some
classes' submethods.
"""
if x == [] or r == []:
print "Error: No data in x and/or r."
return
im = Image.fromarray(x.reshape(self.winsize, self.winsize, 3))
outdir = os.path.join('results', self.name)
if not os.path.exists(outdir):
os.mkdir(outdir)
figfile = os.path.join(outdir, '%s-sel-%d-k-%d.pdf' % (self.name, m, k))
im.save(figfile)
print 'Wrote plot to %s' % figfile
# record the selections in order, at their x,y coords
# subtract selection number from n so first sels have high values
mywidth = self.width - self.winsize
myheight = self.height - self.winsize
# set all unselected items to a value 1 less than the latest
priority = mywidth*myheight - m
if priority < 2:
priority = 2
self.selections[np.where(self.selections < priority)] = priority-2
(y,x) = map(int, label.strip('()').split(','))
#self.selections[ind/mywidth, ind%myheight] = priority
qtrwin = self.winsize/8
self.selections[y-qtrwin:y+qtrwin, x-qtrwin:x+qtrwin] = priority
pylab.clf()
pylab.imshow(self.image)
pylab.hold(True)
#pylab.imshow(self.selections)
masked_sels = np.ma.masked_where(self.selections < priority, self.selections)
pylab.imshow(masked_sels, interpolation='none', alpha=0.5)
#figfile = '%s/%s-priority-%d-k-%d.pdf' % (outdir, self.name, m, k)
# Has to be .png or the alpha transparency doesn't work! (pdf)
figfile = os.path.join(outdir, '%s-priority-k-%d.png' % (self.name, k))
pylab.savefig(figfile)
print 'Wrote selection priority plot to %s' % figfile