當前位置: 首頁>>代碼示例>>Python>>正文


Python pylab.axis方法代碼示例

本文整理匯總了Python中pylab.axis方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.axis方法的具體用法?Python pylab.axis怎麽用?Python pylab.axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylab的用法示例。


在下文中一共展示了pylab.axis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
    """plot_confusion_matrix."""
    cm = confusion_matrix(y_true, y_pred)
    fmt = "%d"
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        fmt = "%.2f"
    xticklabels = list(sorted(set(y_pred)))
    yticklabels = list(sorted(set(y_true)))
    if size is not None:
        plt.figure(figsize=(size, size))
    heatmap(cm, xlabel='Predicted label', ylabel='True label',
            xticklabels=xticklabels, yticklabels=yticklabels,
            cmap=plt.cm.Blues, fmt=fmt)
    if normalize:
        plt.title("Confusion matrix (norm.)")
    else:
        plt.title("Confusion matrix")
    plt.gca().invert_yaxis() 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:21,代碼來源:__init__.py

示例2: plot_roc_curve

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
    """plot_roc_curve."""
    false_positive_rate, true_positive_rate, thresholds = roc_curve(
        y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
        roc_auc_score(y_true, y_score))) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:18,代碼來源:__init__.py

示例3: _cut_windows_vertically

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def _cut_windows_vertically(self, door_top, roof_top, sky_sig, win_strip):
        win_sig = np.percentile(win_strip, 85, axis=1)
        win_sig[sky_sig > 0.5] = 0
        if win_sig.max() > 0:
            win_sig /= win_sig.max()
        win_sig[:roof_top] = 0
        win_sig[door_top:] = 0
        runs, starts, values = run_length_encode(win_sig > 0.5)
        win_heights = runs[values]
        win_tops = starts[values]
        if len(win_heights) > 0:
            win_bottom = win_tops[-1] + win_heights[-1]
            win_top = win_tops[0]
            win_vertical_spacing = np.diff(win_tops).mean() if len(win_tops) > 1 else 0
        else:
            win_bottom = win_top = win_vertical_spacing = -1

        self.top = int(win_top)
        self.bottom = int(win_bottom)
        self.vertical_spacing = int(win_vertical_spacing)
        self.vertical_scores = make_list(win_sig)
        self.heights = np.array(win_heights)
        self.tops = np.array(win_tops) 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:25,代碼來源:megafacade.py

示例4: ransac_guess_color

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def ransac_guess_color(colors, n_iter=50, std=2):
    colors = rgb2lab(colors)
    colors = colors.reshape(-1, 3)
    masked = colors[:, 0] < 0.1
    colors = colors[~masked]
    assert len(colors) > 0, "Must have at least one color"

    best_mu = np.array([0, 0, 0])
    best_n = 0
    for k in range(n_iter):
        subset = colors[np.random.choice(np.arange(len(colors)), 1)]

        mu = subset.mean(0)
        #inliers = (((colors - mu) ** 2 / std) < 1).all(1)
        inliers = ((np.sqrt(np.sum((colors - mu)**2, axis=1))  / std) < 1)

        mu = colors[inliers].mean(0)
        n = len(colors[inliers])
        if n > best_n:
            best_n = n
            best_mu = mu
    #import ipdb; ipdb.set_trace()
    best_mu = np.squeeze(lab2rgb(np.array([[best_mu]])))
    return best_mu 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:26,代碼來源:megafacade.py

示例5: plot_rectified

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_rectified(self):
        import pylab
        pylab.title('rectified')
        pylab.imshow(self.rectified)

        for line in self.vlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0) 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:24,代碼來源:rectify.py

示例6: plot_original

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_original(self):
        import pylab
        pylab.title('original')
        pylab.imshow(self.data)

        for line in self.lines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)

        for line in self.vlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0) 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:24,代碼來源:rectify.py

示例7: plot_iris_knn

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_iris_knn():
    iris = datasets.load_iris()
    X = iris.data[:, :2]  # we only take the first two features. We could
                        # avoid this ugly slicing by using a two-dim dataset
    y = iris.target

    knn = neighbors.KNeighborsClassifier(n_neighbors=3)
    knn.fit(X, y)

    x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1
    y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                         np.linspace(y_min, y_max, 100))
    Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    pl.figure()
    pl.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot also the training points
    pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    pl.xlabel('sepal length (cm)')
    pl.ylabel('sepal width (cm)')
    pl.axis('tight') 
開發者ID:jakevdp,項目名稱:sklearn_pydata2015,代碼行數:27,代碼來源:helpers.py

示例8: __init__

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def __init__(self, norder = 2):
		"""Initializes the class when returning an instance. Pass it the polynomial order. It will 
set up two figure windows, one for the graph the other for the coefficent interface. It will then initialize 
the coefficients to zero and plot the (not so interesting) polynomial."""
		
		self.order = norder
		
		self.c = M.zeros(self.order,'f')
		self.ax = [None]*(self.order-1)#M.zeros(self.order-1,'i') #Coefficent axes
		
		self.ffig = M.figure() #The first figure window has the plot
		self.replotf()
		
		self.cfig = M.figure() #The second figure window has the 
		row = M.ceil(M.sqrt(self.order-1))
		for n in xrange(self.order-1):
			self.ax[n] = M.subplot(row, row, n+1)
			M.setp(self.ax[n],'label', n)
			M.plot([0],[0],'.')
			M.axis([-1, 1, -1, 1]);
			
		self.replotc()
		M.connect('button_press_event', self.click_event) 
開發者ID:ActiveState,項目名稱:code,代碼行數:25,代碼來源:recipe-576501.py

示例9: click_event

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def click_event(self, event):
		"""Whenever a click occurs on the coefficent axes we modify the coefficents and update the 
plot"""
		
		if event.xdata is None:#we clicked outside the axis
			return

		idx = M.getp(event.inaxes,'label')
		
		print idx, event.xdata, event.ydata
				
		self.c[idx] = event.xdata
		self.c[idx+1] = event.ydata

		self.replotf()
		self.replotc() 
開發者ID:ActiveState,項目名稱:code,代碼行數:18,代碼來源:recipe-576501.py

示例10: transform_to_2d

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def transform_to_2d(data, max_axis):
    """
    Projects 3d data cube along one axis using maximum intensity with
    preservation of the signs. Adapted from nilearn.
    """
    import numpy as np

    # get the shape of the array we are projecting to
    new_shape = list(data.shape)
    del new_shape[max_axis]

    # generate a 3D indexing array that points to max abs value in the
    # current projection
    a1, a2 = np.indices(new_shape)
    inds = [a1, a2]
    inds.insert(max_axis, np.abs(data).argmax(axis=max_axis))

    # take the values where the absolute value of the projection
    # is the highest
    maximum_intensity_data = data[inds]

    return np.rot90(maximum_intensity_data) 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:24,代碼來源:utils.py

示例11: padRightDownCorner

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h%stride==0) else stride - (h % stride) # down
    pad[3] = 0 if (w%stride==0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1,:,:]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:,0:1,:]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1,:,:]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:,-2:-1,:]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad 
開發者ID:eddieyi,項目名稱:caffe2-pose-estimation,代碼行數:23,代碼來源:utils.py

示例12: draw_adjacency_graph

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def draw_adjacency_graph(adjacency_matrix,
                         node_color=None,
                         size=10,
                         layout='graphviz',
                         prog='neato',
                         node_size=80,
                         colormap='autumn'):
    """draw_adjacency_graph."""
    graph = nx.from_scipy_sparse_matrix(adjacency_matrix)

    plt.figure(figsize=(size, size))
    plt.grid(False)
    plt.axis('off')

    if layout == 'graphviz':
        pos = nx.graphviz_layout(graph, prog=prog)
    else:
        pos = nx.spring_layout(graph)

    if len(node_color) == 0:
        node_color = 'gray'
    nx.draw_networkx_nodes(graph, pos,
                           node_color=node_color,
                           alpha=0.6,
                           node_size=node_size,
                           cmap=plt.get_cmap(colormap))
    nx.draw_networkx_edges(graph, pos, alpha=0.5)
    plt.show()


# draw a whole set of graphs:: 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:33,代碼來源:__init__.py

示例13: plot_precision_recall_curve

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_precision_recall_curve(y_true, y_score, size=None):
    """plot_precision_recall_curve."""
    precision, recall, thresholds = precision_recall_curve(y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(recall, precision, lw=2, color='navy')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Precision-Recall AUC={0:0.2f}'.format(average_precision_score(
        y_true, y_score))) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:16,代碼來源:__init__.py

示例14: _cut_windows_horizontally

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def _cut_windows_horizontally(self, s, win_strip):
        win_horizontal_scores = []
        if len(self.heights) > 0:
            win_horizontal_scores = np.percentile(win_strip[self.top:self.bottom], 85, axis=0)
            runs, starts, values = run_length_encode(win_horizontal_scores > 0.5)
            starts += s
            win_widths = runs[np.atleast_1d(values)]
            win_widths = np.atleast_1d(win_widths)
            win_lefts = np.atleast_1d(starts[values])
            if len(win_widths) > 0:
                win_left = win_lefts[0]
                win_right = win_lefts[-1] + win_widths[-1]
                win_horizontal_spacing = np.diff(win_lefts).mean() if len(win_lefts) > 1 else 0
                # win_width = win_widths.mean()
            else:
                win_left = win_right = win_horizontal_spacing = -1  # win_width = -1
        else:
            win_widths = win_lefts = []
            win_left = win_right = win_horizontal_spacing = -1

        self.horizontal_spacing = int(win_horizontal_spacing)
        self.left = int(win_left)
        self.right = int(win_right)
        self.horizontal_scores = win_horizontal_scores
        self.lefts = np.array(win_lefts)
        self.widths = np.array(win_widths) 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:28,代碼來源:megafacade.py

示例15: _create_mini_facade

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def _create_mini_facade(self, left, right, wall_colors):
        door_strip = i12.door(self.facade_layers)[:, left:right].copy()
        shop_strip = i12.shop(self.facade_layers)[:, left:right]
        door_strip = np.max((door_strip, shop_strip), axis=0)
        win_strip = self.window_scores[:, left:right].copy()
        sky_strip = self._sky_mask[:, left:right].copy()
        rgb_strip = wall_colors[:, left:right]
        win_strip[:, :1] = win_strip[:, -1:] = 0  # edge effects
        sky_strip[:, :1] = sky_strip[:, -1:] = 0  # edge effects

        facade = FacadeCandidate(self, left, right, sky_strip, door_strip, win_strip, rgb_strip)
        facade.find_regions(self.facade_layers)
        return facade 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:15,代碼來源:megafacade.py


注:本文中的pylab.axis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。