本文整理匯總了Python中pylab.axis方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.axis方法的具體用法?Python pylab.axis怎麽用?Python pylab.axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.axis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_confusion_matrix
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例2: plot_roc_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例3: _cut_windows_vertically
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def _cut_windows_vertically(self, door_top, roof_top, sky_sig, win_strip):
win_sig = np.percentile(win_strip, 85, axis=1)
win_sig[sky_sig > 0.5] = 0
if win_sig.max() > 0:
win_sig /= win_sig.max()
win_sig[:roof_top] = 0
win_sig[door_top:] = 0
runs, starts, values = run_length_encode(win_sig > 0.5)
win_heights = runs[values]
win_tops = starts[values]
if len(win_heights) > 0:
win_bottom = win_tops[-1] + win_heights[-1]
win_top = win_tops[0]
win_vertical_spacing = np.diff(win_tops).mean() if len(win_tops) > 1 else 0
else:
win_bottom = win_top = win_vertical_spacing = -1
self.top = int(win_top)
self.bottom = int(win_bottom)
self.vertical_spacing = int(win_vertical_spacing)
self.vertical_scores = make_list(win_sig)
self.heights = np.array(win_heights)
self.tops = np.array(win_tops)
示例4: ransac_guess_color
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def ransac_guess_color(colors, n_iter=50, std=2):
colors = rgb2lab(colors)
colors = colors.reshape(-1, 3)
masked = colors[:, 0] < 0.1
colors = colors[~masked]
assert len(colors) > 0, "Must have at least one color"
best_mu = np.array([0, 0, 0])
best_n = 0
for k in range(n_iter):
subset = colors[np.random.choice(np.arange(len(colors)), 1)]
mu = subset.mean(0)
#inliers = (((colors - mu) ** 2 / std) < 1).all(1)
inliers = ((np.sqrt(np.sum((colors - mu)**2, axis=1)) / std) < 1)
mu = colors[inliers].mean(0)
n = len(colors[inliers])
if n > best_n:
best_n = n
best_mu = mu
#import ipdb; ipdb.set_trace()
best_mu = np.squeeze(lab2rgb(np.array([[best_mu]])))
return best_mu
示例5: plot_rectified
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_rectified(self):
import pylab
pylab.title('rectified')
pylab.imshow(self.rectified)
for line in self.vlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例6: plot_original
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_original(self):
import pylab
pylab.title('original')
pylab.imshow(self.data)
for line in self.lines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)
for line in self.vlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例7: plot_iris_knn
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_iris_knn():
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
knn.fit(X, y)
x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1
y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
np.linspace(y_min, y_max, 100))
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure()
pl.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
pl.xlabel('sepal length (cm)')
pl.ylabel('sepal width (cm)')
pl.axis('tight')
示例8: __init__
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def __init__(self, norder = 2):
"""Initializes the class when returning an instance. Pass it the polynomial order. It will
set up two figure windows, one for the graph the other for the coefficent interface. It will then initialize
the coefficients to zero and plot the (not so interesting) polynomial."""
self.order = norder
self.c = M.zeros(self.order,'f')
self.ax = [None]*(self.order-1)#M.zeros(self.order-1,'i') #Coefficent axes
self.ffig = M.figure() #The first figure window has the plot
self.replotf()
self.cfig = M.figure() #The second figure window has the
row = M.ceil(M.sqrt(self.order-1))
for n in xrange(self.order-1):
self.ax[n] = M.subplot(row, row, n+1)
M.setp(self.ax[n],'label', n)
M.plot([0],[0],'.')
M.axis([-1, 1, -1, 1]);
self.replotc()
M.connect('button_press_event', self.click_event)
示例9: click_event
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def click_event(self, event):
"""Whenever a click occurs on the coefficent axes we modify the coefficents and update the
plot"""
if event.xdata is None:#we clicked outside the axis
return
idx = M.getp(event.inaxes,'label')
print idx, event.xdata, event.ydata
self.c[idx] = event.xdata
self.c[idx+1] = event.ydata
self.replotf()
self.replotc()
示例10: transform_to_2d
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def transform_to_2d(data, max_axis):
"""
Projects 3d data cube along one axis using maximum intensity with
preservation of the signs. Adapted from nilearn.
"""
import numpy as np
# get the shape of the array we are projecting to
new_shape = list(data.shape)
del new_shape[max_axis]
# generate a 3D indexing array that points to max abs value in the
# current projection
a1, a2 = np.indices(new_shape)
inds = [a1, a2]
inds.insert(max_axis, np.abs(data).argmax(axis=max_axis))
# take the values where the absolute value of the projection
# is the highest
maximum_intensity_data = data[inds]
return np.rot90(maximum_intensity_data)
示例11: padRightDownCorner
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h%stride==0) else stride - (h % stride) # down
pad[3] = 0 if (w%stride==0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1,:,:]*0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:,0:1,:]*0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1,:,:]*0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:,-2:-1,:]*0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
示例12: draw_adjacency_graph
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def draw_adjacency_graph(adjacency_matrix,
node_color=None,
size=10,
layout='graphviz',
prog='neato',
node_size=80,
colormap='autumn'):
"""draw_adjacency_graph."""
graph = nx.from_scipy_sparse_matrix(adjacency_matrix)
plt.figure(figsize=(size, size))
plt.grid(False)
plt.axis('off')
if layout == 'graphviz':
pos = nx.graphviz_layout(graph, prog=prog)
else:
pos = nx.spring_layout(graph)
if len(node_color) == 0:
node_color = 'gray'
nx.draw_networkx_nodes(graph, pos,
node_color=node_color,
alpha=0.6,
node_size=node_size,
cmap=plt.get_cmap(colormap))
nx.draw_networkx_edges(graph, pos, alpha=0.5)
plt.show()
# draw a whole set of graphs::
示例13: plot_precision_recall_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def plot_precision_recall_curve(y_true, y_score, size=None):
"""plot_precision_recall_curve."""
precision, recall, thresholds = precision_recall_curve(y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(recall, precision, lw=2, color='navy')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Precision-Recall AUC={0:0.2f}'.format(average_precision_score(
y_true, y_score)))
示例14: _cut_windows_horizontally
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def _cut_windows_horizontally(self, s, win_strip):
win_horizontal_scores = []
if len(self.heights) > 0:
win_horizontal_scores = np.percentile(win_strip[self.top:self.bottom], 85, axis=0)
runs, starts, values = run_length_encode(win_horizontal_scores > 0.5)
starts += s
win_widths = runs[np.atleast_1d(values)]
win_widths = np.atleast_1d(win_widths)
win_lefts = np.atleast_1d(starts[values])
if len(win_widths) > 0:
win_left = win_lefts[0]
win_right = win_lefts[-1] + win_widths[-1]
win_horizontal_spacing = np.diff(win_lefts).mean() if len(win_lefts) > 1 else 0
# win_width = win_widths.mean()
else:
win_left = win_right = win_horizontal_spacing = -1 # win_width = -1
else:
win_widths = win_lefts = []
win_left = win_right = win_horizontal_spacing = -1
self.horizontal_spacing = int(win_horizontal_spacing)
self.left = int(win_left)
self.right = int(win_right)
self.horizontal_scores = win_horizontal_scores
self.lefts = np.array(win_lefts)
self.widths = np.array(win_widths)
示例15: _create_mini_facade
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import axis [as 別名]
def _create_mini_facade(self, left, right, wall_colors):
door_strip = i12.door(self.facade_layers)[:, left:right].copy()
shop_strip = i12.shop(self.facade_layers)[:, left:right]
door_strip = np.max((door_strip, shop_strip), axis=0)
win_strip = self.window_scores[:, left:right].copy()
sky_strip = self._sky_mask[:, left:right].copy()
rgb_strip = wall_colors[:, left:right]
win_strip[:, :1] = win_strip[:, -1:] = 0 # edge effects
sky_strip[:, :1] = sky_strip[:, -1:] = 0 # edge effects
facade = FacadeCandidate(self, left, right, sky_strip, door_strip, win_strip, rgb_strip)
facade.find_regions(self.facade_layers)
return facade