本文整理匯總了Python中pycuda.driver方法的典型用法代碼示例。如果您正苦於以下問題:Python pycuda.driver方法的具體用法?Python pycuda.driver怎麽用?Python pycuda.driver使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pycuda
的用法示例。
在下文中一共展示了pycuda.driver方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_module_export
# 需要導入模塊: import pycuda [as 別名]
# 或者: from pycuda import driver [as 別名]
def test_module_export(self, tmpdir, input_example, module_name, df_type):
""" Tests the module export.
Args:
tmpdir: Fixture which will provide a temporary directory.
input_example: Input to be passed to TaylorNet.
module_name: Name of the module (section in config file).
df_type: Parameter denoting type of export to be tested.
"""
# Create neural module instance.
module = NeuralModule.import_from_config("tests/configs/test_deploy_export.yaml", module_name)
# Generate filename in the temporary directory.
tmp_file_name = str(tmpdir.mkdir("export").join(module_name))
input_example = input_example.cuda() if input_example is not None else input_example
# Test export.
self.__test_export_route(
module=module, out_name=tmp_file_name, mode=df_type, input_example=input_example,
)
示例2: test_hf_bert
# 需要導入模塊: import pycuda [as 別名]
# 或者: from pycuda import driver [as 別名]
def test_hf_bert(self, tmpdir, df_type):
""" Tests BERT export.
Args:
tmpdir: Fixture which will provide a temporary directory.
df_type: Parameter denoting type of export to be tested.
"""
bert = nemo.collections.nlp.nm.trainables.common.huggingface.BERT(pretrained_model_name="bert-base-uncased")
input_example = OrderedDict(
[
("input_ids", torch.randint(low=0, high=16, size=(2, 16)).cuda()),
("token_type_ids", torch.randint(low=0, high=2, size=(2, 16)).cuda()),
("attention_mask", torch.randint(low=0, high=2, size=(2, 16)).cuda()),
]
)
# Generate filename in the temporary directory.
tmp_file_name = str(tmpdir.mkdir("export").join("bert"))
# Test export.
self.__test_export_route(module=bert, out_name=tmp_file_name, mode=df_type, input_example=input_example)
示例3: test_waveglow
# 需要導入模塊: import pycuda [as 別名]
# 或者: from pycuda import driver [as 別名]
def test_waveglow(self, tmpdir, df_type):
url = "https://api.ngc.nvidia.com/v2/models/nvidia/waveglow_ljspeech/versions/2/files/WaveGlowNM.pt"
ptfile = "./WaveGlowNM.pt"
if not Path(ptfile).is_file():
urllib.request.urlretrieve(url, ptfile)
module = nemo_tts.WaveGlowInferNM(sample_rate=22050)
module.restore_from(ptfile)
module.eval()
torch.manual_seed(1)
mel = torch.randn(1, 80, 96).cuda()
input_example = OrderedDict([("mel_spectrogram", mel)])
tmp_file_name = str(tmpdir.mkdir("export").join("waveglow"))
self.__test_export_route(module=module, out_name=tmp_file_name, mode=df_type, input_example=input_example)
示例4: get_device_count
# 需要導入模塊: import pycuda [as 別名]
# 或者: from pycuda import driver [as 別名]
def get_device_count(verbose=False):
"""
Query device count through PyCuda.
Arguments:
verbose (bool): prints verbose logging if True, default False.
Returns:
int: Number of GPUs available.
"""
try:
import pycuda
import pycuda.driver as drv
except ImportError:
if verbose:
neon_logger.display("PyCUDA module not found")
return 0
try:
drv.init()
except pycuda._driver.RuntimeError as e:
neon_logger.display("PyCUDA Runtime error: {0}".format(str(e)))
return 0
count = drv.Device.count()
if verbose:
neon_logger.display("Found {} GPU(s)".format(count))
return count
示例5: add_module
# 需要導入模塊: import pycuda [as 別名]
# 或者: from pycuda import driver [as 別名]
def add_module(self, module):
try:
# LLVM can't produce CUBIN for some reason
ptx = self._target_machine.emit_assembly(module)
mod = pycuda.compiler.DynamicModule()
mod.add_data(self._generated_builtins, pycuda.driver.jit_input_type.CUBIN, "builtins.cubin")
mod.add_data(ptx.encode(), pycuda.driver.jit_input_type.PTX, module.name + ".ptx")
ptx_mod = mod.link()
except Exception as e:
print("FAILED to generate PTX module:", e)
print(ptx)
return None
self._modules[module] = ptx_mod
示例6: get_compute_capability
# 需要導入模塊: import pycuda [as 別名]
# 或者: from pycuda import driver [as 別名]
def get_compute_capability(device_id=None, verbose=False):
"""
Query compute capability through PyCuda and check it's 5.0 (Maxwell) or
greater.
5.0 (GTX750 Ti) only fp32 support
5.2 (GTX9xx series) required for fp16
By default, check all devices and return the highest compute capability.
Arguments:
device_id (int): CUDA device id. Default to None, will iterate over
all devices if None.
verbose (bool): prints verbose logging if True, default False.
Returns:
float: Zero if no GPU is found, otherwise highest compute capability.
"""
try:
import pycuda
import pycuda.driver as drv
except ImportError:
if verbose:
neon_logger.display("PyCUDA module not found")
return 0
try:
drv.init()
except pycuda._driver.RuntimeError as e:
neon_logger.display("PyCUDA Runtime error: {0}".format(str(e)))
return 0
major_string = pycuda._driver.device_attribute.COMPUTE_CAPABILITY_MAJOR
minor_string = pycuda._driver.device_attribute.COMPUTE_CAPABILITY_MINOR
full_version = []
if device_id is None:
device_id = list(range(drv.Device.count()))
elif isinstance(device_id, int):
device_id = [device_id]
for i in device_id:
major = drv.Device(i).get_attribute(major_string)
minor = drv.Device(i).get_attribute(minor_string)
full_version += [major + minor / 10.]
if verbose:
neon_logger.display("Found GPU(s) with compute capability: {}".format(full_version))
return max(full_version)