本文整理匯總了Python中plotly.graph_objs.Table方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_objs.Table方法的具體用法?Python graph_objs.Table怎麽用?Python graph_objs.Table使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類plotly.graph_objs
的用法示例。
在下文中一共展示了graph_objs.Table方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def draw_table(self, width=None, height=None, title=None, keep_ui_state=True, **kwargs):
cols = self.main_data.data_df.index.names + self.main_data.data_df.columns.tolist()
index1 = self.main_data.data_df.index.get_level_values(0).tolist()
index2 = self.main_data.data_df.index.get_level_values(1).tolist()
values = [index1] + [index2] + [self.main_data.data_df[col] for col in self.main_data.data_df.columns]
data = go.Table(
header=dict(values=cols,
fill_color=['#000080', '#000080'] + ['#0066cc'] * len(self.main_data.data_df.columns),
align='left',
font=dict(color='white', size=13)),
cells=dict(values=values, fill=dict(color='#F5F8FF'), align='left'), **kwargs)
fig = go.Figure()
fig.add_traces([data])
fig.update_layout(self.gen_plotly_layout(width=width, height=height, title=title, keep_ui_state=keep_ui_state))
fig.show()
示例2: calc_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def calc_table(analysis_fields, data_frame):
# calculate variables for the analysis
loss_peak = data_frame[analysis_fields].max().round(2).tolist() # save maximum value of loss
loss_total = (data_frame[analysis_fields].sum() / 1000).round(2).tolist() # save total loss value
# calculate graph
load_utilization = []
loss_names = []
# data = ''
duration = range(HOURS_IN_YEAR)
x = [(a - min(duration)) / (max(duration) - min(duration)) * 100 for a in duration]
for field in analysis_fields:
field_1 = field.split('_')[0]
field_2 = field.split('_')[1]
field_3 = field_1 + '_' + field_2
data_frame_new = data_frame.sort_values(by=field, ascending=False)
y = data_frame_new[field].values
load_utilization.append(evaluate_utilization(x, y))
loss_names.append(NAMING[field] + ' (' + field_3 + ')')
table = go.Table(domain=dict(x=[0, 1], y=[0.7, 1.0]),
header=dict(
values=['Name', 'Peak Load [kW]', 'Yearly Demand [MWh]', 'Utilization [-]']),
cells=dict(values=[loss_names, loss_peak, loss_total, load_utilization]))
return table
示例3: calc_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def calc_table(analysis_fields, data_frame):
# calculate variables for the analysis
load_peak = data_frame[analysis_fields].max().round(2).tolist()
load_total = (data_frame[analysis_fields].sum() / 1000).round(2).tolist()
# calculate graph
load_utilization = []
load_names = []
# data = ''
duration = range(HOURS_IN_YEAR)
x = [(a - min(duration)) / (max(duration) - min(duration)) * 100 for a in duration]
for field in analysis_fields:
data_frame_new = data_frame.sort_values(by=field, ascending=False)
y = data_frame_new[field].values
load_utilization.append(evaluate_utilization(x, y))
load_names.append(NAMING[field] + ' (' + field.split('_', 1)[0] + ')')
table = go.Table(domain=dict(x=[0, 1], y=[0.7, 1.0]),
header=dict(
values=['Load Name', 'Peak Load [kW]', 'Yearly Demand [MWh]', 'Utilization [-]']),
cells=dict(values=[load_names, load_peak, load_total, load_utilization]))
return table
示例4: calc_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def calc_table(analysis_fields, data_frame):
median = data_frame[analysis_fields].median().round(2).tolist()
total = data_frame[analysis_fields].sum().round(2).tolist()
total_perc = [str(x) + " (" + str(round(x / sum(total) * 100, 1)) + " %)" for x in total]
# calculate graph
anchors = []
load_names = []
for field in analysis_fields:
anchors.append(calc_top_three_anchor_loads(data_frame, field))
load_names.append(NAMING[field] + ' (' + field.split('_', 1)[0] + ')')
table = go.Table(domain=dict(x=[0, 1.0], y=[0, 0.2]),
header=dict(values=['Load Name', 'Total [MWh/yr]', 'Median [MWh/yr]', 'Top 3 Consumers']),
cells=dict(values=[load_names, total_perc, median, anchors]))
return table
示例5: calc_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def calc_table(data_frame_month):
"""
draws table of monthly energy balance
:param data_frame_month: data frame of monthly building energy balance
:return:
"""
# create table arrays
name_month = np.append(data_frame_month.index, ['YEAR'])
total_heat = np.append(data_frame_month['Q_heat_sum'].values, data_frame_month['Q_heat_sum'].sum())
total_cool = np.append(data_frame_month['Q_cool_sum'], data_frame_month['Q_cool_sum'].sum())
balance = np.append(data_frame_month['Q_balance'], data_frame_month['Q_balance'].sum().round(2))
# draw table
table = go.Table(domain=dict(x=[0, 1], y=[0.0, 0.2]),
header=dict(values=['Month', 'Total heat [kWh/m2_GFA]', 'Total cool [kWh/m2_GFA]',
'Delta [kWh/m2_GFA]']),
cells=dict(values=[name_month, total_heat, total_cool, balance]))
return table
示例6: _table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def _table(self, node):
p = None if node.p is None else format(node.p, ".5f")
score = None if node.score is None else format(node.score, ".2f")
values = [p, score, node.split.column]
return go.Table(
cells=dict(values=[TABLE_HEADER, values], **TABLE_CELLS_CONFIG),
**TABLE_CONFIG
)
示例7: calc_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def calc_table(dict_graph):
"""
draws table of monthly energy balance
:param dict_graph: dict containing the lists of summer, winter, occupied and unoccupied operative temperatures and
\moisture ratios, i.e. the results of comfort_chart.calc_data
:type dict_graph: dict
:return: plotly table trace
:rtype: plotly.graph_objs.Table
"""
# create table arrays
# check winter comfort
count_winter_comfort, count_winter_uncomfort = check_comfort(dict_graph['t_op_occupied_winter'],
dict_graph['x_int_occupied_winter'],
VERTICES_WINTER_COMFORT)
winter_hours = len(dict_graph['t_op_occupied_winter'])
perc_winter_comfort = count_winter_comfort/winter_hours if winter_hours > 0 else 0
cell_winter_comfort = "{} ({:.0%})".format(count_winter_comfort, perc_winter_comfort)
perc_winter_uncomfort = count_winter_uncomfort / winter_hours if winter_hours > 0 else 0
cell_winter_uncomfort = "{} ({:.0%})".format(count_winter_uncomfort, perc_winter_uncomfort)
# check summer comfort
count_summer_comfort, count_summer_uncomfort = check_comfort(dict_graph['t_op_occupied_summer'],
dict_graph['x_int_occupied_summer'],
VERTICES_SUMMER_COMFORT)
summer_hours = len(dict_graph['t_op_occupied_summer'])
perc_summer_comfort = count_summer_comfort / summer_hours if summer_hours > 0 else 0
cell_summer_comfort = "{} ({:.0%})".format(count_summer_comfort, perc_summer_comfort)
perc_summer_uncomfort = count_summer_uncomfort / summer_hours if summer_hours > 0 else 0
cell_summer_uncomfort = "{} ({:.0%})".format(count_summer_uncomfort, perc_summer_uncomfort)
# draw table
table = go.Table(domain=dict(x=[0.0, 1], y=[YAXIS_DOMAIN_GRAPH[1], 1.0]),
header=dict(values=['condition', 'comfort [h]', 'uncomfort [h]']),
cells=dict(values=[['summer occupied', 'winter occupied'],
[cell_summer_comfort, cell_winter_comfort],
[cell_summer_uncomfort, cell_winter_uncomfort]]),
visible=True)
return table
示例8: __summary_plot
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def __summary_plot (self, width, height, plot_title, header, data_format, data):
"""Private function generating summary table plots"""
self.logger.info ("\t\tComputing plot")
# Plot data
data = [go.Table(
header = {
"values":header,
"align":"center", "fill":{"color":"grey"},
"font":{"size":14, "color":"white"},
"height":40},
cells = {
"values":data,
"format": data_format,
"align":"center",
"fill":{"color":"whitesmoke"},
"font":{"size":12}, "height":30})]
# tweak plot layout
layout = go.Layout (
width = width,
height = height,
title = {"text":plot_title, "xref":"paper" ,"x":0.5, "xanchor":"center"})
return go.Figure (data=data, layout=layout)
#~~~~~~~1D DISTRIBUTION METHODS AND HELPER~~~~~~~#
示例9: alignment_reads_status
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def alignment_reads_status (self,
colors:list=["#f44f39","#fc8161","#fcaf94","#828282"],
width:int= None,
height:int=500,
plot_title:str="Summary of reads alignment status"):
"""
Plot a basic alignment summary
* colors
List of colors (hex, rgb, rgba, hsl, hsv or any CSS named colors https://www.w3.org/TR/css-color-3/#svg-color
* width
With of the plotting area in pixel
* height
height of the plotting area in pixel
* plot_title
Title to display on top of the plot
"""
# Verify that alignemnt information are available
if not self.has_alignment:
raise pycoQCError ("No Alignment information available")
self.logger.info ("\t\tComputing plot")
df = self.alignments_df
# Create empty multiplot figure
fig = make_subplots(rows=1, cols=2, column_widths=[0.4, 0.6], specs=[[{"type": "table"},{"type": "pie"}]])
# plot Table
data = go.Table(
columnwidth = [3,2,2],
header = {"values":list(df.columns), "align":"center", "fill_color":"grey", "font_size":14, "font_color":"white", "height":40},
cells = {"values":df.values.T , "align":"center", "fill_color":"whitesmoke", "font_size":12, "height":30})
fig.add_trace (data, row=1, col=1)
# plot Pie plot
data = go.Pie (
labels=df["Alignments"],
values=df["Counts"],
sort=False,
marker={"colors":colors},
name="Pie plot",
textinfo='label+percent')
fig.add_trace (data, row=1, col=2)
# Change the layout
fig.update_layout(
width = width,
height = height,
title = {"text":plot_title, "xref":"paper" ,"x":0.5, "xanchor":"center"})
return fig
#~~~~~~~ALIGNMENT RATE METHOD AND HELPER~~~~~~~#
示例10: ipy_plot_interactive
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Table [as 別名]
def ipy_plot_interactive(df, opacity=.3):
import plotly.graph_objs as go
from ipywidgets import interactive
if 'labels' in df.columns:
text = [f'Class {k}: index {i}' for i,k in zip(df.index, df.labels)] # hovertext
else:
text = [f'index {i}' for i in df.index] # hovertext
xaxis, yaxis = df.columns[0], df.columns[1]
f = go.FigureWidget([go.Scattergl(x=df[xaxis],
y=df[yaxis],
mode='markers',
text=text,
marker=dict(size=2,
opacity=opacity,
color=np.arange(len(df)),
colorscale='hsv'
))])
scatter = f.data[0]
N = len(df)
f.update_layout(xaxis_title=xaxis, yaxis_title=yaxis)
f.layout.dragmode = 'lasso'
def update_axes(xaxis, yaxis, color_by, colorscale):
scatter = f.data[0]
scatter.x = df[xaxis]
scatter.y = df[yaxis]
scatter.marker.colorscale = colorscale
if colorscale is None:
scatter.marker.color = None
else:
scatter.marker.color = df[color_by] if color_by != 'index' else df.index
with f.batch_update(): # what is this for??
f.layout.xaxis.title = xaxis
f.layout.yaxis.title = yaxis
widget = interactive(update_axes,
yaxis=df.select_dtypes('number').columns,
xaxis=df.select_dtypes('number').columns,
color_by = df.columns,
colorscale = [None,'hsv','plotly3','deep','portland','picnic','armyrose'])
t = go.FigureWidget([go.Table(
header=dict(values=['index']),
cells=dict(values=[df.index]),
)])
def selection_fn(trace, points, selector):
t.data[0].cells.values = [df.loc[points.point_inds].index]
scatter.on_selection(selection_fn)
return widget, f, t