本文整理匯總了Python中plotly.graph_objs.Bar方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_objs.Bar方法的具體用法?Python graph_objs.Bar怎麽用?Python graph_objs.Bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類plotly.graph_objs
的用法示例。
在下文中一共展示了graph_objs.Bar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate_chart
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def generate_chart(self, _):
try:
import plotly
import plotly.graph_objs as go
data = [[0, 0, 0], [0, 0, 0]]
ok, viol = self.results.get_ok_viol()
x = ["OK (%d)" % ok, "Tampering (%d)" % viol]
for ret in self.results:
i = 1 if ret.is_tampering() else 0
data[i][0] += ret.is_aligned()
data[i][1] += ret.is_disaligned()
data[i][2] += ret.is_single()
final_data = [go.Bar(x=x, y=[x[0] for x in data], name="Aligned"), go.Bar(x=x, y=[x[1] for x in data], name="Disaligned"), go.Bar(x=x, y=[x[2] for x in data], name="Single")]
fig = go.Figure(data=final_data, layout=go.Layout(barmode='group', title='Call stack tampering labels'))
plotly.offline.plot(fig, output_type='file', include_plotlyjs=True, auto_open=True)
except ImportError:
self.log("ERROR", "Plotly module not available")
示例2: createContent
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def createContent(self):
values = self.getValues("y")
colors = self._visuals._colors.getFirst(len(values))
opacity = self.getOpt("opacity")
self._data = []
orientation = self.getOpt("orientation","vertical")
if orientation == "horizontal":
for i,v in enumerate(values):
self._data.append(go.Bar(x=[0],y=[""],name=v,orientation="h",marker_color=colors[i]))
else:
for i,v in enumerate(values):
self._data.append(go.Bar(x=[""],y=[0],name=v,opacity=opacity,marker_color=colors[i]))
示例3: test_generate_group_bar_charts
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def test_generate_group_bar_charts(self, mock_py):
x_values = [
[5.10114882, 5.0194652482, 4.9908093076],
[4.5824497358, 4.7083614037, 4.3812775722],
[2.6839471308, 3.0441476209, 3.6403820447]
]
y_values = ['#kubuntu-devel', '#ubuntu-devel', '#kubuntu']
trace_headers = ['head1', 'head2', 'head3']
test_data = [
go.Bar(
x=x_values,
y=y_values[i],
name=trace_headers[i]
) for i in range(len(y_values))
]
layout = go.Layout(barmode='group')
fig = go.Figure(data=test_data, layout=layout)
vis.generate_group_bar_charts(y_values, x_values, trace_headers, self.test_data_dir, 'test_group_bar_chart')
self.assertEqual(mock_py.call_count, 1)
self.assertEqual(fig.get('data')[0], mock_py.call_args[0][0].get('data')[0])
示例4: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
# main data about technologies
data = self.process_individual_dispatch_curve_cooling()
graph = []
analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
for field in analysis_fields:
y = (data[field].values) / 1E6 # into MW
trace = go.Bar(x=data.index, y=y, name=NAMING[field],
marker=dict(color=COLOR[field]))
graph.append(trace)
# data about demand
for field in self.analysis_field_demand:
y = (data[field].values) / 1E6 # into MW
trace = go.Scattergl(x=data.index, y=y, name=NAMING[field],
line=dict(width=1, color=COLOR[field]))
graph.append(trace)
return graph
開發者ID:architecture-building-systems,項目名稱:CityEnergyAnalyst,代碼行數:22,代碼來源:f_dispatch_curve_cooling_plant.py
示例5: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
# main data about technologies
data = self.process_individual_dispatch_curve_heating()
graph = []
analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
for field in analysis_fields:
y = (data[field].values) / 1E6 # into MW
trace = go.Bar(x=data.index, y=y, name=NAMING[field],
marker=dict(color=COLOR[field]))
graph.append(trace)
# data about demand
for field in self.analysis_field_demand:
y = (data[field].values) / 1E6 # into MW
trace = go.Scattergl(x=data.index, y=y, name=NAMING[field],
line=dict(width=1, color=COLOR[field]))
graph.append(trace)
return graph
開發者ID:architecture-building-systems,項目名稱:CityEnergyAnalyst,代碼行數:22,代碼來源:e_dispatch_curve_heating_plant.py
示例6: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
# main data about technologies
data = self.process_individual_requirements_curve_electricity()
graph = []
analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
for field in analysis_fields:
y = (data[field].values) / 1E6 # into MWh
trace = go.Bar(x=data.index, y=y, name=NAMING[field],
marker=dict(color=COLOR[field]))
graph.append(trace)
# data about demand
for field in self.analysis_field_demand:
y = (data[field].values) / 1E6 # into MWh
trace = go.Scattergl(x=data.index, y=y, name=NAMING[field],
line=dict(width=1, color=COLOR[field]))
graph.append(trace)
return graph
開發者ID:architecture-building-systems,項目名稱:CityEnergyAnalyst,代碼行數:22,代碼來源:c_requirements_curve_electricity.py
示例7: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
# calculate graph
graph = []
# format demand values
P_loss_kWh = self.P_loss_kWh.fillna(value=0)
P_loss_kWh = pd.DataFrame(P_loss_kWh.sum(axis=0), columns=['P_loss_kWh'])
Q_loss_kWh = abs(self.thermal_loss_edges_kWh.fillna(value=0))
Q_loss_kWh = pd.DataFrame(Q_loss_kWh.sum(axis=0), columns=['Q_loss_kWh'])
# calculate total_df
total_df = pd.DataFrame(P_loss_kWh.values + Q_loss_kWh.values, index=Q_loss_kWh.index, columns=['total'])
# join dataframes
merged_df = P_loss_kWh.join(Q_loss_kWh).join(total_df)
merged_df = merged_df.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
# iterate through P_loss_kWh to plot
for field in ['P_loss_kWh', 'Q_loss_kWh']:
total_percent = (merged_df[field] / merged_df['total'] * 100).round(2)
total_percent_txt = ["(" + str(x) + " %)" for x in total_percent]
trace = go.Bar(x=merged_df.index, y=merged_df[field].values, name=NAMING[field],
text=total_percent_txt,
orientation='v',
marker=dict(color=COLOR[field]))
graph.append(trace)
return graph
示例8: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
data = self.calculate_hourly_loads()
traces = []
analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
for field in analysis_fields:
y = data[field].values / 1E3 # to MW
name = NAMING[field]
trace = go.Bar(x=data.index, y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
data_T = self.calculate_external_temperature()
for field in ["T_ext_C"]:
y = data_T[field].values
name = NAMING[field]
trace = go.Scattergl(x=data_T.index, y=y, name=name, yaxis='y2', opacity=0.2)
traces.append(trace)
return traces
示例9: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields)
if len(self.buildings) == 1:
assert len(self.data) == 1, 'Expected DataFrame with only one row'
building_data = self.data.iloc[0]
traces = []
area = building_data["GFA_m2"]
x = ["Absolute [kW]", "Relative [W/m2]"]
for field in analysis_fields:
name = NAMING[field]
y = [building_data[field], building_data[field] / area * 1000]
trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
return traces
else:
traces = []
dataframe = self.data
for field in analysis_fields:
y = dataframe[field]
name = NAMING[field]
trace = go.Bar(x=dataframe["Name"], y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
return traces
示例10: peak_load_building
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def peak_load_building(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
area = data_frame["GFA_m2"]
data_frame = data_frame[analysis_fields]
x = ["Absolute [kW] ", "Relative [W/m2]"]
for field in analysis_fields:
y = [data_frame[field], data_frame[field] / area * 1000]
name = NAMING[field]
trace = go.Bar(x=x, y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例11: peak_load_district
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def peak_load_district(data_frame_totals, analysis_fields, title, output_path):
traces = []
data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1)
data_frame_totals = data_frame_totals.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
for field in analysis_fields:
y = data_frame_totals[field]
total_perc = (y / data_frame_totals['total'] * 100).round(2).values
total_perc_txt = ["(" + str(x) + " %)" for x in total_perc]
name = NAMING[field]
trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例12: energy_use_intensity
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def energy_use_intensity(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
area = data_frame["GFA_m2"]
x = ["Absolute [MWh/yr]", "Relative [kWh/m2.yr]"]
for field in analysis_fields:
name = NAMING[field]
y = [data_frame[field], data_frame[field] / area * 1000]
trace = go.Bar(x=x, y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='stack', showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例13: energy_use_intensity_district
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def energy_use_intensity_district(data_frame, analysis_fields, title, output_path):
traces = []
data_frame_copy = data_frame.copy() # make a copy to avoid passing new data of the dataframe around the class
for field in analysis_fields:
data_frame_copy[field] = data_frame_copy[field] * 1000 / data_frame_copy["GFA_m2"] # in kWh/m2y
data_frame_copy['total'] = data_frame_copy[analysis_fields].sum(axis=1)
data_frame_copy = data_frame_copy.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
x = data_frame_copy["Name"].tolist()
for field in analysis_fields:
y = data_frame_copy[field]
name = NAMING[field]
trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='stack', yaxis=dict(title='Energy Use Intensity [kWh/m2.yr]'),
showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例14: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields)
if len(self.buildings) == 1:
assert len(self.data) == 1, 'Expected DataFrame with only one row'
building_data = self.data.iloc[0]
traces = []
area = building_data["GFA_m2"]
x = ["Absolute [kW]", "Relative [kW/m2]"]
for field in analysis_fields:
name = NAMING[field]
y = [building_data[field], building_data[field] / area * 1000]
trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
return traces
else:
traces = []
dataframe = self.data
for field in analysis_fields:
y = dataframe[field]
name = NAMING[field]
trace = go.Bar(x=dataframe["Name"], y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
return traces
示例15: calc_graph
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Bar [as 別名]
def calc_graph(self):
graph = []
analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields)
dataframe = self.data
dataframe['total'] = dataframe[analysis_fields].sum(axis=1)
dataframe.sort_values(by='total', ascending=False, inplace=True)
dataframe.reset_index(inplace=True, drop=True)
for field in analysis_fields:
y = dataframe[field]
name = NAMING[field]
total_percent = (y / dataframe['total'] * 100).round(2).values
total_percent_txt = ["(%.2f %%)" % x for x in total_percent]
trace = go.Bar(x=dataframe["Name"], y=y, name=name, text=total_percent_txt, orientation='v',
marker=dict(color=COLOR[field]))
graph.append(trace)
return graph