當前位置: 首頁>>代碼示例>>Python>>正文


Python gdal.GDT_UInt16方法代碼示例

本文整理匯總了Python中osgeo.gdal.GDT_UInt16方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.GDT_UInt16方法的具體用法?Python gdal.GDT_UInt16怎麽用?Python gdal.GDT_UInt16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在osgeo.gdal的用法示例。


在下文中一共展示了gdal.GDT_UInt16方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: writeRaster

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def writeRaster(arr, out_path, template):
    no_data = 0
    # First of all, gather some information from the template file
    data = gdal.Open(template)
    [cols, rows] = arr.shape
    trans = data.GetGeoTransform()
    proj = data.GetProjection()
    # nodatav = 0 #data.GetNoDataValue()
    # Create the file, using the information from the template file
    outdriver = gdal.GetDriverByName("GTiff")
    # http://www.gdal.org/gdal_8h.html
    # GDT_Byte = 1, GDT_UInt16 = 2, GDT_UInt32 = 4, GDT_Int32 = 5, GDT_Float32 = 6,
    outdata   = outdriver.Create(str(out_path), rows, cols, 1, gdal.GDT_UInt32)
    # Write the array to the file, which is the original array in this example
    outdata.GetRasterBand(1).WriteArray(arr)
    # Set a no data value if required
    outdata.GetRasterBand(1).SetNoDataValue(no_data)
    # Georeference the image
    outdata.SetGeoTransform(trans)
    # Write projection information
    outdata.SetProjection(proj)
    return arr


# raster to vector 
開發者ID:giswqs,項目名稱:lidar,代碼行數:27,代碼來源:slicing.py

示例2: getNumpyType

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def getNumpyType(self, pixelType = gdal.GDT_Byte):
        '''
        Translates the gdal raster type to numpy type
        pixelType: gdal raster type
        '''
        if pixelType == gdal.GDT_Byte:
            return numpy.uint8
        elif pixelType == gdal.GDT_UInt16:
            return numpy.uint16
        elif pixelType == gdal.GDT_Int16:
            return numpy.int16
        elif pixelType == gdal.GDT_UInt32:
            return numpy.uint32
        elif pixelType == gdal.GDT_Int32:
            return numpy.int32
        elif pixelType == gdal.GDT_Float32:
            return numpy.float32
        elif pixelType == gdal.GDT_Float64:
            return numpy.float64 
開發者ID:dsgoficial,項目名稱:DsgTools,代碼行數:21,代碼來源:raster_processing.py

示例3: getNumpyType

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def getNumpyType(self, pixelType = gdal.GDT_Byte):
        """
        Translates the gdal raster type to numpy type
        pixelType: gdal raster type
        """
        if pixelType == gdal.GDT_Byte:
            return numpy.uint8
        elif pixelType == gdal.GDT_UInt16:
            return numpy.uint16
        elif pixelType == gdal.GDT_Int16:
            return numpy.int16
        elif pixelType == gdal.GDT_UInt32:
            return numpy.uint32
        elif pixelType == gdal.GDT_Int32:
            return numpy.int32
        elif pixelType == gdal.GDT_Float32:
            return numpy.float32
        elif pixelType == gdal.GDT_Float64:
            return numpy.float64 
開發者ID:dsgoficial,項目名稱:DsgTools,代碼行數:21,代碼來源:HSV_fusion.py

示例4: create_ds

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def create_ds(file_name, xsize, ysize, band_count, compress=True):
    options = ['PHOTOMETRIC=RGB']
    if compress:
        options.append('COMPRESS=DEFLATE')
        options.append('PREDICTOR=2')

    datatype = gdal.GDT_UInt16
    gdal_ds = gdal.GetDriverByName('GTIFF').Create(
        file_name, xsize, ysize, band_count, datatype,
        options=options)
    return gdal_ds 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:13,代碼來源:gimage.py

示例5: setUp

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def setUp(self):
        self.band = numpy.array([[0, 1], [2, 3]], dtype=numpy.uint16)
        self.mask = numpy.array([[0, 1], [0, 1]], dtype=numpy.bool)
        self.metadata = {'geotransform': (-1.0, 2.0, 0.0, 1.0, 0.0, -1.0)}

        self.test_photometric_alpha_image = 'test_photometric_alpha_image.tif'
        test_ds = gdal.GetDriverByName('GTiff').Create(
            self.test_photometric_alpha_image, 2, 2, 4, gdal.GDT_UInt16,
            options=['PHOTOMETRIC=RGB', 'ALPHA=YES'])
        gdal_array.BandWriteArray(test_ds.GetRasterBand(1), self.band)
        gdal_array.BandWriteArray(test_ds.GetRasterBand(2), self.band)
        gdal_array.BandWriteArray(test_ds.GetRasterBand(3), self.band)
        gdal_array.BandWriteArray(test_ds.GetRasterBand(4), self.mask)
        test_ds.SetGeoTransform(self.metadata['geotransform']) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:16,代碼來源:gimage_tests.py

示例6: test__save_to_ds

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def test__save_to_ds(self):
        output_file = 'test_save_to_ds.tif'

        test_band = numpy.array([[0, 1], [2, 3]], dtype=numpy.uint16)
        test_gimage = gimage.GImage([test_band], self.mask, self.metadata)
        output_ds = gdal.GetDriverByName('GTiff').Create(
            output_file, 2, 2, 2, gdal.GDT_UInt16,
            options=['ALPHA=YES'])
        gimage._save_to_ds(test_gimage, output_ds, nodata=3)

        # Required for gdal to write to file
        output_ds = None

        test_ds = gdal.Open(output_file)

        saved_number_of_bands = test_ds.RasterCount
        self.assertEquals(saved_number_of_bands, 2)

        saved_band = test_ds.GetRasterBand(1).ReadAsArray()
        numpy.testing.assert_array_equal(saved_band, self.band)

        saved_nodata = test_ds.GetRasterBand(1).GetNoDataValue()
        self.assertEqual(saved_nodata, 3)

        saved_alpha = test_ds.GetRasterBand(2).ReadAsArray()
        numpy.testing.assert_array_equal(saved_alpha, self.mask * 255)

        os.unlink(output_file) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:30,代碼來源:gimage_tests.py

示例7: _str_of_gdt

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def _str_of_gdt(gdt):
    return {
        gdal.GDT_Byte: 'GDT_Byte',
        gdal.GDT_Int16: 'GDT_Int16',
        gdal.GDT_Int32: 'GDT_Int32',
        gdal.GDT_UInt16: 'GDT_UInt16',
        gdal.GDT_UInt32: 'GDT_UInt32',
        gdal.GDT_Float32: 'GDT_Float32',
        gdal.GDT_Float64: 'GDT_Float64',
        gdal.GDT_CFloat32: 'GDT_CFloat32',
        gdal.GDT_CFloat64: 'GDT_CFloat64',
        gdal.GDT_CInt16: 'GDT_CInt16',
        gdal.GDT_CInt32: 'GDT_CInt32',
    }[gdt] 
開發者ID:airware,項目名稱:buzzard,代碼行數:16,代碼來源:_gdal_gdt_conv.py

示例8: polygonize

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def polygonize(img,shp_path):
    # mapping between gdal type and ogr field type
    type_mapping = {gdal.GDT_Byte: ogr.OFTInteger,
                    gdal.GDT_UInt16: ogr.OFTInteger,
                    gdal.GDT_Int16: ogr.OFTInteger,
                    gdal.GDT_UInt32: ogr.OFTInteger,
                    gdal.GDT_Int32: ogr.OFTInteger,
                    gdal.GDT_Float32: ogr.OFTReal,
                    gdal.GDT_Float64: ogr.OFTReal,
                    gdal.GDT_CInt16: ogr.OFTInteger,
                    gdal.GDT_CInt32: ogr.OFTInteger,
                    gdal.GDT_CFloat32: ogr.OFTReal,
                    gdal.GDT_CFloat64: ogr.OFTReal}

    ds = gdal.Open(img)
    prj = ds.GetProjection()
    srcband = ds.GetRasterBand(1)
    dst_layername = "Shape"
    drv = ogr.GetDriverByName("ESRI Shapefile")
    dst_ds = drv.CreateDataSource(shp_path)
    srs = osr.SpatialReference(wkt=prj)

    dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs)
    raster_field = ogr.FieldDefn('id', type_mapping[srcband.DataType])
    dst_layer.CreateField(raster_field)
    gdal.Polygonize(srcband, srcband, dst_layer, 0, [], callback=None)
    del img, ds, srcband, dst_ds, dst_layer


# convert images in a selected folder to shapefiles 
開發者ID:giswqs,項目名稱:lidar,代碼行數:32,代碼來源:slicing.py

示例9: polygonize

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def polygonize(img,shp_path):
    # mapping between gdal type and ogr field type
    type_mapping = {gdal.GDT_Byte: ogr.OFTInteger,
                    gdal.GDT_UInt16: ogr.OFTInteger,
                    gdal.GDT_Int16: ogr.OFTInteger,
                    gdal.GDT_UInt32: ogr.OFTInteger,
                    gdal.GDT_Int32: ogr.OFTInteger,
                    gdal.GDT_Float32: ogr.OFTReal,
                    gdal.GDT_Float64: ogr.OFTReal,
                    gdal.GDT_CInt16: ogr.OFTInteger,
                    gdal.GDT_CInt32: ogr.OFTInteger,
                    gdal.GDT_CFloat32: ogr.OFTReal,
                    gdal.GDT_CFloat64: ogr.OFTReal}

    ds = gdal.Open(img)
    prj = ds.GetProjection()
    srcband = ds.GetRasterBand(1)

    dst_layername = "Shape"
    drv = ogr.GetDriverByName("ESRI Shapefile")
    dst_ds = drv.CreateDataSource(shp_path)
    srs = osr.SpatialReference(wkt=prj)

    dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs)
    # raster_field = ogr.FieldDefn('id', type_mapping[srcband.DataType])
    raster_field = ogr.FieldDefn('id', type_mapping[gdal.GDT_Int32])
    dst_layer.CreateField(raster_field)
    gdal.Polygonize(srcband, srcband, dst_layer, 0, [], callback=None)
    del img, ds, srcband, dst_ds, dst_layer


# extract sinks from dem 
開發者ID:giswqs,項目名稱:lidar,代碼行數:34,代碼來源:filling.py

示例10: create_mask_from_vector

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def create_mask_from_vector(vector_data_path, cols, rows, geo_transform, 
			    projection, target_value=1,
                            output_fname='', dataset_format='MEM'):

    """
    Rasterize the given vector (wrapper for gdal.RasterizeLayer). 
    Return a gdal.Dataset.
    :param vector_data_path: Path to a shapefile
    :param cols: Number of columns of the result
    :param rows: Number of rows of the result
    :param geo_transform: Returned value of gdal.Dataset.GetGeoTransform 
	(coefficients for transforming between pixel/line (P,L) raster space,
	 and projection coordinates (Xp,Yp) space.
    :param projection: Projection definition string (Returned by 
	gdal.Dataset.GetProjectionRef)
    :param target_value: Pixel value for the pixels. Must be a valid 
	gdal.GDT_UInt16 value.
    :param output_fname: If the dataset_format is GeoTIFF, this is the output 
	file name
    :param dataset_format: The gdal.Dataset driver name. [default: MEM]
    """

    driver = ogr.GetDriverByName('ESRI Shapefile')
    data_source = driver.Open(vector_data_path, 0)
    if data_source is None:
        report_and_exit("File read failed: %s", vector_data_path)
    layer = data_source.GetLayer(0)
    driver = gdal.GetDriverByName(dataset_format)
    target_ds = driver.Create(output_fname, cols, rows, 1, gdal.GDT_UInt16)
    target_ds.SetGeoTransform(geo_transform)
    target_ds.SetProjection(projection)
    gdal.RasterizeLayer(target_ds, [1], layer, burn_values=[target_value])
    return target_ds 
開發者ID:bullocke,項目名稱:coded,代碼行數:35,代碼來源:classify.py

示例11: update_msi

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import GDT_UInt16 [as 別名]
def update_msi(input_file_name, output_file_name):
    img = tifffile.imread(input_file_name)
    rows, cols, bands = img.shape
    driver = gdal.GetDriverByName("GTiff")
    output_data = driver.Create(output_file_name, rows, cols, bands, gdal.GDT_UInt16)
    for band in range(0, bands):
        output_band = output_data.GetRasterBand(band + 1)
        output_band.WriteArray(img[:, :, band])
    output_data.FlushCache()
    output_data = None


# main 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:15,代碼來源:update_msi.py


注:本文中的osgeo.gdal.GDT_UInt16方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。