當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.trunc方法代碼示例

本文整理匯總了Python中numpy.trunc方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.trunc方法的具體用法?Python numpy.trunc怎麽用?Python numpy.trunc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.trunc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: RQGA

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def RQGA(n, string_num):
    psi_=psi(string_num)
    H=hadamard(n)
    psi_=np.dot(H,psi_)
    print(psi_)
    print()
    iter=np.trunc(maxiter(n))
    iter=int(round(iter))
    for i in range (1,iter):
        U_O=U_Oracle(n)
        print(U_O)
        print()
        psi_=np.dot(U_O,psi_)
        print(psi_)
        print()
        D=ia(n)
        psi_=np.dot(D,psi_)
    print(psi_)

#########################################################
#                                                       #
# MAIN PROGRAM                                          #
#                                                       #
######################################################### 
開發者ID:ResearchCodesHub,項目名稱:QuantumGeneticAlgorithms,代碼行數:26,代碼來源:RQGA.py

示例2: test_adjust_gamma_less_one

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def test_adjust_gamma_less_one(self):
    """Verifying the output with expected results for gamma
    correction with gamma equal to half"""
    with self.test_session():
      x_np = np.arange(0, 255, 4, np.uint8).reshape(8,8)
      y = image_ops.adjust_gamma(x_np, gamma=0.5)
      y_tf = np.trunc(y.eval())

      y_np = np.array([[  0,  31,  45,  55,  63,  71,  78,  84],
          [ 90,  95, 100, 105, 110, 115, 119, 123],
          [127, 131, 135, 139, 142, 146, 149, 153],
          [156, 159, 162, 165, 168, 171, 174, 177],
          [180, 183, 186, 188, 191, 194, 196, 199],
          [201, 204, 206, 209, 211, 214, 216, 218],
          [221, 223, 225, 228, 230, 232, 234, 236],
          [238, 241, 243, 245, 247, 249, 251, 253]], dtype=np.float32)

      self.assertAllClose(y_tf, y_np, 1e-6) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:image_ops_test.py

示例3: test_adjust_gamma_greater_one

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def test_adjust_gamma_greater_one(self):
    """Verifying the output with expected results for gamma
    correction with gamma equal to two"""
    with self.test_session():
      x_np = np.arange(0, 255, 4, np.uint8).reshape(8,8)
      y = image_ops.adjust_gamma(x_np, gamma=2)
      y_tf = np.trunc(y.eval())

      y_np = np.array([[  0,   0,   0,   0,   1,   1,   2,   3],
          [  4,   5,   6,   7,   9,  10,  12,  14],
          [ 16,  18,  20,  22,  25,  27,  30,  33],
          [ 36,  39,  42,  45,  49,  52,  56,  60],
          [ 64,  68,  72,  76,  81,  85,  90,  95],
          [100, 105, 110, 116, 121, 127, 132, 138],
          [144, 150, 156, 163, 169, 176, 182, 189],
          [196, 203, 211, 218, 225, 233, 241, 249]], dtype=np.float32)

      self.assertAllClose(y_tf, y_np, 1e-6) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:image_ops_test.py

示例4: check_for_quench

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def check_for_quench(self, wait=5, threshold=0.95, repetitions=1000):
        '''
        Checks the magent for quench

        Input:
            wait (float) : waiting time in sec, default=5
            threshold (float) : maximum voltage in volts, default=0.95
            repetitions (int) : number of times quenching is checked, default=1000

        Output:
            None
        '''
        logging.debug(__name__ + 'check_for_quench()')
        for i in range(repetitions):
            time.sleep(wait)
            voltage = self.do_get_voltage()
            current = self.do_get_current()
            print "V=" + str(np.trunc(voltage * 1000) / 1000.) + "V, I=" + str(
                np.trunc(current * 1000) / 1000.) + "A, R=" + str(int(np.trunc(voltage / current * 1000))) + "mOhm"
            if voltage > threshold:
                print "WARNING! Magnet quench!! ramping down the coil..."
                self.ramp_current(0., 2e-3, wait=0.2, showvalue=True)
                return 
開發者ID:qkitgroup,項目名稱:qkit,代碼行數:25,代碼來源:virtual_pwsMagnet.py

示例5: numpy_math

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def numpy_math(x):
    # **Trigonometric functions**
    a = np.sin(x)     #   Trigonometric sine, element-wise.
    a = np.cos(x)     #   Cosine elementwise.
    a = np.tan(x)     #   Compute tangent element-wise.
    a = np.arcsin(x)     #Inverse sine, element-wise.
    a = np.arccos(x)     #Trigonometric inverse cosine, element-wise.
    a = np.arctan(x)     #Trigonometric inverse tangent, element-wise.
    
    # **Hyperbolic functions**
    a = np.sinh(x)     #  Hyperbolic sine, element-wise.
    a = np.cosh(x)     #  Hyperbolic cosine, element-wise.
    a = np.tanh(x)     #  Compute hyperbolic tangent element-wise.
    
    
    # **Miscellaneous**
    a = np.exp(x)     #   Calculate the exponential of all elements in the input array.
    a = np.sum(x)     #          Return the sum of array elements.
    a = np.sqrt(x)     #         Return the positive square-root of an array, element-wise.
    a = np.ceil(x)     #         Return the ceiling of the input, element-wise.
    a = np.floor(x)     #        Return the floor of the input, element-wise.
    a = np.trunc(x)     #        Return the truncated value of the input, element-wise.
    a = np.fabs(x)     #            Compute the absolute values element-wise
    a = np.pi     #              Returns the pi constant 
開發者ID:jakeret,項目名稱:hope,代碼行數:26,代碼來源:hope_numpy.py

示例6: test_unary_identity

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def test_unary_identity():
    for op, ref in [(relay.zeros_like, np.zeros_like),
               (relay.ones_like, np.ones_like),
               (relay.ceil, np.ceil),
               (relay.floor, np.floor),
               (relay.trunc, np.trunc),
               (relay.round, np.round),
               (relay.abs, np.abs),
               (relay.copy, None), # np.copy
               (relay.negative, np.negative),
               (relay.sign, np.sign)]:
        shape = (8, 9, 4)
        x = relay.var("x", relay.TensorType(shape, "float32"))
        y = op(x)
        yy = run_infer_type(y)
        assert yy.checked_type == relay.TensorType(shape, "float32")

        if ref is not None:
            data = np.random.rand(*shape).astype('float32')
            intrp = create_executor()
            op_res = intrp.evaluate(y, { x: relay.const(data) })
            ref_res = ref(data)
            np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=0.01) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:25,代碼來源:test_op_level3.py

示例7: idl_round

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def idl_round(x):
    """
    Round to the *nearest* integer, half-away-from-zero.

    Parameters
    ----------
    x : array-like
        Number or array to be rounded

    Returns
    -------
    r_rounded : array-like
        note that the returned values are floats

    Notes
    -----
    IDL ``ROUND`` rounds to the *nearest* integer (commercial rounding),
    unlike numpy's round/rint, which round to the nearest *even*
    value (half-to-even, financial rounding) as defined in IEEE-754
    standard.

    """
    return np.trunc(x + np.copysign(0.5, x)) 
開發者ID:vortex-exoplanet,項目名稱:VIP,代碼行數:25,代碼來源:utils.py

示例8: get_native_grids

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def get_native_grids(lat_min, lon_min, lat_max, lon_max):
        """
        Returns the latitude and longitude grid at native SRTM30 resolution
        that are included in the given rectangle.

        Args:
            lat_min: The latitude coordinate of the lower left corner.
            lon_min: The longitude coordinate of the lower left corner.
            lat_max: The latitude coordinate of the upper right corner.
            lon_max: The latitude coordinate of the upper right corner.
        Returns:
            Tuple :code:`(lats, lons)` of 1D-arrays containing the latitude
            and longitude coordinates of the SRTM30 data points within the
            given rectangle.
        """
        i = (90 - lat_max) / SRTM30._dlat
        i_max = np.trunc(i)
        if not i_max < i:
            i_max = i_max + 1
        i = (90 - lat_min) / SRTM30._dlat
        i_min = np.trunc(i)
        lat_grid = 90 + 0.5 * SRTM30._dlat - np.arange(i_max, i_min + 1) * SRTM30._dlat

        j = (lon_max + 180) / SRTM30._dlon
        j_max = np.trunc((lon_max + 180.0) / SRTM30._dlon)
        if not j_max < j:
            j_max = j_max - 1

        j_min = np.trunc((lon_min + 180.0) / SRTM30._dlon)
        lon_grid = -180 + 0.5 * SRTM30._dlon
        lon_grid += np.arange(j_min, j_max + 1) * SRTM30._dlon

        return lat_grid, lon_grid 
開發者ID:atmtools,項目名稱:typhon,代碼行數:35,代碼來源:topography.py

示例9: __trunc__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def __trunc__(self):
        """trunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        """
        raise NotImplementedError

    ############################################## 
開發者ID:FabriceSalvaire,項目名稱:PySpice,代碼行數:15,代碼來源:Unit.py

示例10: trunc

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def trunc(x, out=None, where=None, **kwargs):
    """
    Return the truncated value of the input, element-wise.

    The truncated value of the scalar `x` is the nearest integer `i` which
    is closer to zero than `x` is. In short, the fractional part of the
    signed number `x` is discarded.

    Parameters
    ----------
    x : array_like
        Input data.
    out : Tensor, None, or tuple of Tensor and None, optional
        A location into which the result is stored. If provided, it must have
        a shape that the inputs broadcast to. If not provided or `None`,
        a freshly-allocated tensor is returned. A tuple (possible only as a
        keyword argument) must have length equal to the number of outputs.
    where : array_like, optional
        Values of True indicate to calculate the ufunc at that position, values
        of False indicate to leave the value in the output alone.
    **kwargs

    Returns
    -------
    y : Tensor or scalar
        The truncated value of each element in `x`.

    See Also
    --------
    ceil, floor, rint

    Examples
    --------
    >>> import mars.tensor as mt

    >>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    >>> mt.trunc(a).execute()
    array([-1., -1., -0.,  0.,  1.,  1.,  2.])
    """
    op = TensorTrunc(**kwargs)
    return op(x, out=out, where=where) 
開發者ID:mars-project,項目名稱:mars,代碼行數:43,代碼來源:trunc.py

示例11: test_numpy_method

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def test_numpy_method():
    # This type of code is used frequently by PyMC3 users
    x = tt.dmatrix('x')
    data = np.random.rand(5, 5)
    x.tag.test_value = data
    for fct in [np.arccos, np.arccosh, np.arcsin, np.arcsinh,
                np.arctan, np.arctanh, np.ceil, np.cos, np.cosh, np.deg2rad,
                np.exp, np.exp2, np.expm1, np.floor, np.log,
                np.log10, np.log1p, np.log2, np.rad2deg,
                np.sin, np.sinh, np.sqrt, np.tan, np.tanh, np.trunc]:
        y = fct(x)
        f = theano.function([x], y)
        utt.assert_allclose(np.nan_to_num(f(data)),
                            np.nan_to_num(fct(data))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:16,代碼來源:test_var.py

示例12: impl

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def impl(self, x):
        return numpy.trunc(x) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:4,代碼來源:basic.py

示例13: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def __init__(self, n, k):
        """
        K-Folds cross validation iterator:
        Provides train/test indexes to split data in train test sets

        Parameters
        ----------
        n: int
            Total number of elements
        k: int
            number of folds

        Examples
        --------
        >>> from scikits.learn import cross_val
        >>> X = [[1, 2], [3, 4], [1, 2], [3, 4]]
        >>> y = [1, 2, 3, 4]
        >>> kf = cross_val.KFold(4, k=2)
        >>> for train_index, test_index in kf:
        ...    print "TRAIN:", train_index, "TEST:", test_index
        ...    X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
        TRAIN: [False False  True  True] TEST: [ True  True False False]
        TRAIN: [ True  True False False] TEST: [False False  True  True]

        Notes
        -----
        All the folds have size trunc(n/k), the last one has the complementary
        """
        assert k>0, ValueError('cannot have k below 1')
        assert k<n, ValueError('cannot have k=%d greater than %d'% (k, n))
        self.n = n
        self.k = k 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:34,代碼來源:cross_val.py

示例14: _compute_hommel_value

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def _compute_hommel_value(z_vals, alpha, verbose=False):
    """Compute the All-Resolution Inference hommel-value"""
    if alpha < 0 or alpha > 1:
        raise ValueError('alpha should be between 0 and 1')
    z_vals_ = - np.sort(- z_vals)
    p_vals = norm.sf(z_vals_)
    n_samples = len(p_vals)

    if len(p_vals) == 1:
        return p_vals[0] > alpha
    if p_vals[0] > alpha:
        return n_samples
    slopes = (alpha - p_vals[: - 1]) / np.arange(n_samples, 1, -1)
    slope = np.max(slopes)
    hommel_value = np.trunc(n_samples + (alpha - slope * n_samples) / slope)
    if verbose:
        try:
            from matplotlib import pyplot as plt
        except ImportError:
            warnings.warn('"verbose" option requires the package Matplotlib.'
                          'Please install it using `pip install matplotlib`.')
        else:
            plt.figure()
            plt.plot(p_vals, 'o')
            plt.plot([n_samples - hommel_value, n_samples], [0, alpha])
            plt.plot([0, n_samples], [0, 0], 'k')
            plt.show(block=False)
    return np.minimum(hommel_value, n_samples) 
開發者ID:nilearn,項目名稱:nistats,代碼行數:30,代碼來源:thresholding.py

示例15: truncate

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import trunc [as 別名]
def truncate(values, decs=2):
    return np.trunc(values*10**decs)/(10**decs) 
開發者ID:nussl,項目名稱:nussl,代碼行數:4,代碼來源:report_card.py


注:本文中的numpy.trunc方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。