本文整理匯總了Python中numpy.tanh方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.tanh方法的具體用法?Python numpy.tanh怎麽用?Python numpy.tanh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.tanh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def __init__(self, choice="sigmoid"):
"""
:param choice: Which activation function you want, must be in self.available
"""
if choice not in self.available:
msg = "Choice of activation (" + choice + ") not available!"
log.out.error(msg)
raise ValueError(msg)
elif choice == "tanh":
self.function = self._tanh
elif choice == "tanhpos":
self.function = self._tanhpos
elif choice == "sigmoid":
self.function = self._sigmoid
elif choice == "softplus":
self.function = self._softplus
elif choice == "relu":
self.function = self._relu
elif choice == "leakyrelu":
self.function = self._leakyrelu
示例2: _check_success
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def _check_success(self):
"""
Returns True if task has been completed.
"""
# remember objects that are on the correct pegs
gripper_site_pos = self.sim.data.site_xpos[self.eef_site_id]
for i in range(len(self.ob_inits)):
obj_str = str(self.item_names[i]) + "0"
obj_pos = self.sim.data.body_xpos[self.obj_body_id[obj_str]]
dist = np.linalg.norm(gripper_site_pos - obj_pos)
r_reach = 1 - np.tanh(10.0 * dist)
self.objects_on_pegs[i] = int(self.on_peg(obj_pos, i) and r_reach < 0.6)
if self.single_object_mode > 0:
return np.sum(self.objects_on_pegs) > 0 # need one object on peg
# returns True if all objects are on correct pegs
return np.sum(self.objects_on_pegs) == len(self.ob_inits)
示例3: _check_success
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def _check_success(self):
"""
Returns True if task has been completed.
"""
# remember objects that are in the correct bins
gripper_site_pos = self.sim.data.site_xpos[self.eef_site_id]
for i in range(len(self.ob_inits)):
obj_str = str(self.item_names[i]) + "0"
obj_pos = self.sim.data.body_xpos[self.obj_body_id[obj_str]]
dist = np.linalg.norm(gripper_site_pos - obj_pos)
r_reach = 1 - np.tanh(10.0 * dist)
self.objects_in_bins[i] = int(
(not self.not_in_bin(obj_pos, i)) and r_reach < 0.6
)
# returns True if a single object is in the correct bin
if self.single_object_mode == 1 or self.single_object_mode == 2:
return np.sum(self.objects_in_bins) > 0
# returns True if all objects are in correct bins
return np.sum(self.objects_in_bins) == len(self.ob_inits)
示例4: draw_value_reward_score
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def draw_value_reward_score(self, img, value, reward, score):
img = img.copy()
# Average with 0.5 for semi-transparent background
img[:14] = img[:14] * 0.5 + 0.25
img[50:] = img[50:] * 0.5 + 0.25
if self.cfg.gan == 'ls':
red = -np.tanh(float(score) / 1) * 0.5 + 0.5
else:
red = -np.tanh(float(score) / 10.0) * 0.5 + 0.5
top = '%+.2f %+.2f' % (value, reward)
cv2.putText(img, top, (3, 7), cv2.FONT_HERSHEY_SIMPLEX, 0.25,
(1.0, 1.0 - red, 1.0 - red))
score = '%+.3f' % score
cv2.putText(img, score, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.35,
(1.0, 1.0 - red, 1.0 - red))
return img
示例5: forward
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def forward(self, inputs, context=None):
mask_right = (inputs > self.cut_point)
mask_left = (inputs < -self.cut_point)
mask_middle = ~(mask_right | mask_left)
outputs = torch.zeros_like(inputs)
outputs[mask_middle] = torch.tanh(inputs[mask_middle])
outputs[mask_right] = self.alpha * torch.log(self.beta * inputs[mask_right])
outputs[mask_left] = self.alpha * -torch.log(-self.beta * inputs[mask_left])
logabsdet = torch.zeros_like(inputs)
logabsdet[mask_middle] = torch.log(1 - outputs[mask_middle] ** 2)
logabsdet[mask_right] = torch.log(self.alpha / inputs[mask_right])
logabsdet[mask_left] = torch.log(-self.alpha / inputs[mask_left])
logabsdet = utils.sum_except_batch(logabsdet, num_batch_dims=1)
return outputs, logabsdet
示例6: invert_bfgs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def invert_bfgs(gen_model, invert_model, ftr_model, im, z_predict=None, npx=64):
_f, z = invert_model
nz = gen_model.nz
if z_predict is None:
z_predict = np_rng.uniform(-1., 1., size=(1, nz))
else:
z_predict = floatX(z_predict)
z_predict = np.arctanh(z_predict)
im_t = gen_model.transform(im)
ftr = ftr_model(im_t)
prob = optimize.minimize(f_bfgs, z_predict, args=(_f, im_t, ftr),
tol=1e-6, jac=True, method='L-BFGS-B', options={'maxiter': 200})
print('n_iters = %3d, f = %.3f' % (prob.nit, prob.fun))
z_opt = prob.x
z_opt_n = floatX(z_opt[np.newaxis, :])
[f_opt, g, gx] = _f(z_opt_n, im_t, ftr)
gx = gen_model.inverse_transform(gx, npx=npx)
z_opt = np.tanh(z_opt)
return gx, z_opt, f_opt
示例7: expand
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def expand(self, X):
"""Binarize features.
Parameters:
----------
X: np.ndarray
Features
Returns:
-------
X: np.ndarray
Binarized features
"""
Xexp = []
for i in range(X.shape[1]):
for k in np.arange(0, self.max[i] + self.step, self.step):
Xexp += [np.tanh((X[:, i] - k) / self.step)]
return np.array(Xexp).T
示例8: sum_of_squares_error
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def sum_of_squares_error(xlist, tlist, w1, w2):
"""二乗誤差和を計算する"""
error = 0.0
for n in range(N):
z = np.zeros(NUM_HIDDEN)
y = np.zeros(NUM_OUTPUT)
# バイアスの1を先頭に挿入
x = np.insert(xlist[n], 0, 1)
# 順伝播で出力を計算
for j in range(NUM_HIDDEN):
a = np.zeros(NUM_HIDDEN)
for i in range(NUM_INPUT):
a[j] += w1[j, i] * x[i]
z[j] = np.tanh(a[j])
for k in range(NUM_OUTPUT):
for j in range(NUM_HIDDEN):
y[k] += w2[k, j] * z[j]
# 二乗誤差を計算
for k in range(NUM_OUTPUT):
error += 0.5 * (y[k] - tlist[n, k]) * (y[k] - tlist[n, k])
return error
示例9: output
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def output(x, w1, w2):
"""xを入力したときのニューラルネットワークの出力を計算
隠れユニットの出力も一緒に返す"""
# 配列に変換して先頭にバイアスの1を挿入
x = np.insert(x, 0, 1)
z = np.zeros(NUM_HIDDEN)
y = np.zeros(NUM_OUTPUT)
# 順伝播で出力を計算
for j in range(NUM_HIDDEN):
a = np.zeros(NUM_HIDDEN)
for i in range(NUM_INPUT):
a[j] += w1[j, i] * x[i]
z[j] = np.tanh(a[j])
for k in range(NUM_OUTPUT):
for j in range(NUM_HIDDEN):
y[k] += w2[k, j] * z[j]
return y, z
示例10: sum_of_squares_error
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def sum_of_squares_error(xlist, tlist, w1, w2):
"""二乗誤差和を計算する"""
error = 0.0
for n in range(N):
z = np.zeros(NUM_HIDDEN)
y = np.zeros(NUM_OUTPUT)
# バイアスの1を先頭に挿入
x = np.insert(xlist[n], 0, 1)
# 順伝播で出力を計算
for j in range(NUM_HIDDEN):
a = np.zeros(NUM_HIDDEN)
a[j] = np.dot(w1[j, :], x)
z[j] = np.tanh(a[j])
for k in range(NUM_OUTPUT):
y[k] = np.dot(w2[k, :], z)
# 二乗誤差を計算
for k in range(NUM_OUTPUT):
error += 0.5 * (y[k] - tlist[n, k]) * (y[k] - tlist[n, k])
return error
示例11: faster_call2
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def faster_call2(self, h, x):
r_z_h_x = self.W_r_z_h(x)
r_z_h = self.U_r_z(h)
r_x, z_x, h_x = split_axis(r_z_h_x, (self.n_units, self.n_units * 2), axis=1)
assert r_x.data.shape[1] == self.n_units
assert z_x.data.shape[1] == self.n_units
assert h_x.data.shape[1] == self.n_units
r_h, z_h = split_axis(r_z_h, (self.n_units,), axis=1)
# r = sigmoid.sigmoid(r_x + r_h)
# z = sigmoid.sigmoid(z_x + z_h)
# h_bar = tanh.tanh(h_x + self.U(sigm_a_plus_b_by_h(r_x, r_h, h)))
# h_new = (1 - z) * h + z * h_bar
# return h_new
return compute_output_GRU(z_x, z_h, h_x, h, self.U(sigm_a_plus_b_by_h_fast(r_x, r_h, h)))
示例12: run
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def run(gens_file, theshold=None, flip_r_e1=False):
model = pickle.load(open("ckbc-demo/Bilinear_cetrainSize300frac1.0dSize200relSize150acti0.001.1e-05.800.RAND.tanh.txt19.pickle", "r"))
Rel = model['rel']
We = model['embeddings']
Weight = model['weight']
Offset = model['bias']
words = model['words_name']
rel = model['rel_name']
results = []
if type(gens_file) == list:
gens = []
for file_name in gens_file:
gens += open(file_name, "r").read().split("\n")
else:
gens = open(gens_file, "r").read().split("\n")
formatted_gens = [tuple(i.split("\t")[:4]) for i in gens if i]
for i, gen in enumerate(formatted_gens):
if gen == ('s', 'r', 'o', 'minED'):
continue
if flip_r_e1:
relation = "_".join(gen[1].split(" "))
subject_ = "_".join(gen[0].split(" "))
else:
relation = "_".join(gen[0].split(" "))
subject_ = "_".join(gen[1].split(" "))
object_ = "_".join(gen[2].split(" "))
result = score(subject_, object_, words, We, rel, Rel, Weight, Offset, relation)
results.append((gen, result))
return results
示例13: tanh
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def tanh(x):
return np.tanh(x)
示例14: score_function
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def score_function(self, x, W):
y_predict = x[1:]
for i in range(0, len(W), 1):
y_predict = np.tanh(np.dot(np.hstack((1, y_predict)), W[i]))
score = y_predict[0]
return score
示例15: forward_process
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tanh [as 別名]
def forward_process(self, x, y, W):
forward_output = []
pre_x = x
for i in range(len(W)):
pre_x = np.tanh(np.dot(pre_x, W[i]))
forward_output.append(pre_x)
pre_x = np.hstack((1, pre_x))
return forward_output