本文整理匯總了Python中numpy.subtract方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.subtract方法的具體用法?Python numpy.subtract怎麽用?Python numpy.subtract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.subtract方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calWeights
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def calWeights(self, img, kernel, y, x):
wmax = 0
sweight = 0
average = 0
for j in range(2 * self.Ds + 1 - 2 * self.ds - 1):
for i in range(2 * self.Ds + 1 - 2 * self.ds - 1):
start_y = y - self.Ds + self.ds + j
start_x = x - self.Ds + self.ds + i
neighbour_w = img[start_y - self.ds:start_y + self.ds + 1, start_x - self.ds:start_x + self.ds + 1]
center_w = img[y-self.ds:y+self.ds+1, x-self.ds:x+self.ds+1]
if j != y or i != x:
sub = np.subtract(neighbour_w, center_w)
dist = np.sum(np.multiply(kernel, np.multiply(sub, sub)))
w = np.exp(-dist/pow(self.h, 2)) # replaced by look up table
if w > wmax:
wmax = w
sweight = sweight + w
average = average + w * img[start_y, start_x]
return sweight, average, wmax
示例2: load_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def load_image(img_path, net_input_shape):
imgBGR = cv2.imread(img_path)
img = cv2.resize(imgBGR, net_input_shape)
# BGR -> RGB
#img = img[:,:, (2, 1, 0)]
## Method 1
# imgT = np.transpose(img, (2, 0, 1)) # c,w,h
# imgF = np.asarray(imgT, dtype=np.float32)
# mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
# imgS = np.subtract(imgF,mean)
## Method 2
imgF = np.asarray(img, dtype=np.float32)
mean = [128.0, 128.0, 128.0] # Caffe image mean
# mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
imgSS = np.subtract(imgF, mean)/128.0
imgS = np.transpose(imgSS, (2, 0, 1)) # c,w,h
# RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)
return imgBGR, np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous
示例3: load_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def load_image(img_path, net_input_shape):
img = cv2.resize(cv2.imread(img_path), net_input_shape)
# BGR -> RGB
#img = img[:,:, (2, 1, 0)]
## Method 1
# imgT = np.transpose(img, (2, 0, 1)) # c,w,h
# imgF = np.asarray(imgT, dtype=np.float32)
# mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
# imgS = np.subtract(imgF,mean)
## Method 2
imgF = np.asarray(img, dtype=np.float32)
mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
imgSS = np.subtract(imgF, mean)
imgS = np.transpose(imgSS, (2, 0, 1)) # CHW
# RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)
return np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous
示例4: load_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def load_image(img_path, net_input_shape):
img = cv2.resize(cv2.imread(img_path), net_input_shape)
# BGR -> RGB
#img = img[:,:, (2, 1, 0)]
## Method 1
# imgT = np.transpose(img, (2, 0, 1)) # c,w,h
# imgF = np.asarray(imgT, dtype=np.float32)
# mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
# imgS = np.subtract(imgF,mean)
## Method 2
imgF = np.asarray(img, dtype=np.float32)
mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
imgSS = np.subtract(imgF, mean)
imgS = np.transpose(imgSS, (2, 0, 1)) # CHW
# RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)
return np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous
示例5: load_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def load_image(img_path, net_input_shape):
imgBGR = cv2.imread(img_path)
img = cv2.resize(imgBGR, net_input_shape)
# BGR -> RGB
#img = img[:,:, (2, 1, 0)]
## Method 1
# imgT = np.transpose(img, (2, 0, 1)) # c,w,h
# imgF = np.asarray(imgT, dtype=np.float32)
# mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
# imgS = np.subtract(imgF,mean)
## Method 2
imgF = np.asarray(img, dtype=np.float32)
mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
imgSS = np.subtract(imgF, mean)
imgS = np.transpose(imgSS, (2, 0, 1)) # c,w,h
# RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)
return imgBGR, np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous
示例6: apply_val_transform_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def apply_val_transform_image(image,inputRes=None):
meanval = (104.00699, 116.66877, 122.67892)
if inputRes is not None:
image = sm.imresize(image, inputRes)
image = np.array(image, dtype=np.float32)
image = np.subtract(image, np.array(meanval, dtype=np.float32))
if image.ndim == 2:
image = image[:, :, np.newaxis]
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1))
image = torch.from_numpy(image)
return image
示例7: make_img_gt_pair
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def make_img_gt_pair(self, idx):
"""
Make the image-ground-truth pair
"""
img = cv2.imread(os.path.join(self.db_root_dir, self.img_list[idx]))
if self.labels[idx] is not None:
label = cv2.imread(os.path.join(self.db_root_dir, self.labels[idx]), 0)
else:
gt = np.zeros(img.shape[:-1], dtype=np.uint8)
if self.inputRes is not None:
img = imresize(img, self.inputRes)
if self.labels[idx] is not None:
label = imresize(label, self.inputRes, interp='nearest')
img = np.array(img, dtype=np.float32)
img = np.subtract(img, np.array(self.meanval, dtype=np.float32))
if self.labels[idx] is not None:
gt = np.array(label, dtype=np.float32)
gt = gt/np.max([gt.max(), 1e-8])
return img, gt
示例8: VOCap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def VOCap(rec,prec):
mpre = np.zeros([1,2+len(prec)])
mpre[0,1:len(prec)+1] = prec
mrec = np.zeros([1,2+len(rec)])
mrec[0,1:len(rec)+1] = rec
mrec[0,len(rec)+1] = 1.0
for i in range(mpre.size-2,-1,-1):
mpre[0,i] = max(mpre[0,i],mpre[0,i+1])
i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1
i = i.flatten()
# compute area under the curve
ap = np.sum( np.multiply( np.subtract( mrec[0,i], mrec[0,i-1]), mpre[0,i] ) )
return ap
示例9: _unsigned_subtract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def _unsigned_subtract(a, b):
"""
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
"""
# coerce to a single type
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError:
return np.subtract(a, b, dtype=dt)
else:
# we know the inputs are integers, and we are deliberately casting
# signed to unsigned
return np.subtract(a, b, casting='unsafe', dtype=dt)
示例10: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例11: test_pi_ops_nat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def test_pi_ops_nat(self):
idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'],
freq='M', name='idx')
expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'],
freq='M', name='idx')
self._check(idx, lambda x: x + 2, expected)
self._check(idx, lambda x: 2 + x, expected)
self._check(idx, lambda x: np.add(x, 2), expected)
self._check(idx + 2, lambda x: x - 2, idx)
self._check(idx + 2, lambda x: np.subtract(x, 2), idx)
# freq with mult
idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'],
freq='2M', name='idx')
expected = PeriodIndex(['2011-07', '2011-08', 'NaT', '2011-10'],
freq='2M', name='idx')
self._check(idx, lambda x: x + 3, expected)
self._check(idx, lambda x: 3 + x, expected)
self._check(idx, lambda x: np.add(x, 3), expected)
self._check(idx + 3, lambda x: x - 3, idx)
self._check(idx + 3, lambda x: np.subtract(x, 3), idx)
示例12: test_pi_ops_array_int
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def test_pi_ops_array_int(self):
idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'],
freq='M', name='idx')
f = lambda x: x + np.array([1, 2, 3, 4])
exp = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'],
freq='M', name='idx')
self._check(idx, f, exp)
f = lambda x: np.add(x, np.array([4, -1, 1, 2]))
exp = PeriodIndex(['2011-05', '2011-01', 'NaT', '2011-06'],
freq='M', name='idx')
self._check(idx, f, exp)
f = lambda x: x - np.array([1, 2, 3, 4])
exp = PeriodIndex(['2010-12', '2010-12', 'NaT', '2010-12'],
freq='M', name='idx')
self._check(idx, f, exp)
f = lambda x: np.subtract(x, np.array([3, 2, 3, -2]))
exp = PeriodIndex(['2010-10', '2010-12', 'NaT', '2011-06'],
freq='M', name='idx')
self._check(idx, f, exp)
示例13: test_mutate_all
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def test_mutate_all():
df = pd.DataFrame({
'alpha': list('aaabbb'),
'beta': list('babruq'),
'theta': list('cdecde'),
'x': [1, 2, 3, 4, 5, 6],
'y': [6, 5, 4, 3, 2, 1],
'z': [7, 9, 11, 8, 10, 12]
})
result = (df
>> group_by('alpha')
>> select('x', 'y', 'z')
>> mutate_all((np.add, np.subtract), 10)
)
assert 'alpha' in result
示例14: app_entropy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def app_entropy(x, order=2, metric='chebyshev'):
"""Approximate Entropy
Parameters
----------
x : list or np.array
One-dimensional time series of shape (n_times)
order : int (default: 2)
Embedding dimension.
metric : str (default: chebyshev)
Name of the metric function used with
:class:`~sklearn.neighbors.KDTree`. The list of available
metric functions is given by: ``KDTree.valid_metrics``.
Returns
-------
ae : float
Approximate Entropy.
"""
phi = _app_samp_entropy(x, order=order, metric=metric, approximate=True)
return np.subtract(phi[0], phi[1])
示例15: _unsigned_subtract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import subtract [as 別名]
def _unsigned_subtract(a, b):
"""
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
"""
# coerce to a single type
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError: # pragma: no cover
return np.subtract(a, b, dtype=dt)
else:
# we know the inputs are integers, and we are deliberately casting
# signed to unsigned
return np.subtract(a, b, casting='unsafe', dtype=dt)