當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.stack方法代碼示例

本文整理匯總了Python中numpy.stack方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.stack方法的具體用法?Python numpy.stack怎麽用?Python numpy.stack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.stack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def __init__(self, masks, height, width):
        self.height = height
        self.width = width
        if len(masks) == 0:
            self.masks = np.empty((0, self.height, self.width), dtype=np.uint8)
        else:
            assert isinstance(masks, (list, np.ndarray))
            if isinstance(masks, list):
                assert isinstance(masks[0], np.ndarray)
                assert masks[0].ndim == 2  # (H, W)
            else:
                assert masks.ndim == 3  # (N, H, W)

            self.masks = np.stack(masks).reshape(-1, height, width)
            assert self.masks.shape[1] == self.height
            assert self.masks.shape[2] == self.width 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:18,代碼來源:structures.py

示例2: test_monthly_mean_at_each_ind

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def test_monthly_mean_at_each_ind():
    times_submonthly = pd.to_datetime(['2000-06-01', '2000-06-15',
                                       '2000-07-04', '2000-07-19'])
    times_means = pd.to_datetime(['2000-06-01', '2000-07-01'])
    len_other_dim = 2
    arr_submonthly = xr.DataArray(
        np.random.random((len(times_submonthly), len_other_dim)),
        dims=[TIME_STR, 'dim0'], coords={TIME_STR: times_submonthly}
    )
    arr_means = xr.DataArray(
        np.random.random((len(times_means), len_other_dim)),
        dims=arr_submonthly.dims, coords={TIME_STR: times_means}
    )
    actual = monthly_mean_at_each_ind(arr_means, arr_submonthly)
    desired_values = np.stack([arr_means.values[0]] * len_other_dim +
                              [arr_means.values[1]] * len_other_dim,
                              axis=0)
    desired = xr.DataArray(desired_values, dims=arr_submonthly.dims,
                           coords=arr_submonthly.coords)
    assert actual.identical(desired) 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:22,代碼來源:test_utils_times.py

示例3: convert

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def convert(story):
    # import pdb; pdb.set_trace()
    sentence_arr, graphs, query_arr, answer_arr = story
    node_id_w = graphs[2].shape[2]
    edge_type_w = graphs[3].shape[3]

    all_node_strengths = [np.zeros([1])]
    all_node_ids = [np.zeros([1,node_id_w])]
    for num_new_nodes, new_node_strengths, new_node_ids, _ in zip(*graphs):
        last_strengths = all_node_strengths[-1]
        last_ids = all_node_ids[-1]

        cur_strengths = np.concatenate([last_strengths, new_node_strengths], 0)
        cur_ids = np.concatenate([last_ids, new_node_ids], 0)

        all_node_strengths.append(cur_strengths)
        all_node_ids.append(cur_ids)

    all_edges = graphs[3]
    full_n_nodes = all_edges.shape[1]
    all_node_strengths = np.stack([np.pad(x, ((0, full_n_nodes-x.shape[0])), 'constant') for x in all_node_strengths[1:]])
    all_node_ids = np.stack([np.pad(x, ((0, full_n_nodes-x.shape[0]), (0, 0)), 'constant') for x in all_node_ids[1:]])
    all_node_states = np.zeros([len(all_node_strengths), full_n_nodes,0])

    return tuple(x[np.newaxis,...] for x in (all_node_strengths, all_node_ids, all_node_states, all_edges)) 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:27,代碼來源:convert_story.py

示例4: assemble_batch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def assemble_batch(story_fns, num_answer_words, format_spec):
    stories = []
    for sfn in story_fns:
        with gzip.open(sfn,'rb') as f:
            cvtd_story, _, _, _ = pickle.load(f)
        stories.append(cvtd_story)
    sents, graphs, queries, answers = zip(*stories)
    cvtd_sents = np.array(sents, np.int32)
    cvtd_queries = np.array(queries, np.int32)
    max_ans_len = max(len(a) for a in answers)
    cvtd_answers = np.stack([convert_answer(answer, num_answer_words, format_spec, max_ans_len) for answer in answers])
    num_new_nodes, new_node_strengths, new_node_ids, next_edges = zip(*graphs)
    num_new_nodes = np.stack(num_new_nodes)
    new_node_strengths = np.stack(new_node_strengths)
    new_node_ids = np.stack(new_node_ids)
    next_edges = np.stack(next_edges)
    return cvtd_sents, cvtd_queries, cvtd_answers, num_new_nodes, new_node_strengths, new_node_ids, next_edges 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:19,代碼來源:ggtnn_train.py

示例5: validate_on_lfw

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def validate_on_lfw(model, lfw_160_path):
    # Read the file containing the pairs used for testing
    pairs = lfw.read_pairs('validation-LFW-pairs.txt')
    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
    num_pairs = len(actual_issame)

    all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
    for k in tqdm.trange(num_pairs):
        img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
        img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
        batch = np.stack([img1, img2], axis=0)
        embeddings = model.eval_embeddings(batch)
        all_embeddings[k * 2: k * 2 + 2, :] = embeddings

    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
        all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:27,代碼來源:face_attack.py

示例6: offset_to_pts

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def offset_to_pts(self, center_list, pred_list):
        """Change from point offset to point coordinate."""
        pts_list = []
        for i_lvl in range(len(self.point_strides)):
            pts_lvl = []
            for i_img in range(len(center_list)):
                pts_center = center_list[i_img][i_lvl][:, :2].repeat(
                    1, self.num_points)
                pts_shift = pred_list[i_lvl][i_img]
                yx_pts_shift = pts_shift.permute(1, 2, 0).view(
                    -1, 2 * self.num_points)
                y_pts_shift = yx_pts_shift[..., 0::2]
                x_pts_shift = yx_pts_shift[..., 1::2]
                xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
                xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
                pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
                pts_lvl.append(pts)
            pts_lvl = torch.stack(pts_lvl, 0)
            pts_list.append(pts_lvl)
        return pts_list 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:22,代碼來源:reppoints_head.py

示例7: _get_area_ratio

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks):
        """Compute area ratio of the gt mask inside the proposal and the gt
        mask of the corresponding instance."""
        num_pos = pos_proposals.size(0)
        if num_pos > 0:
            area_ratios = []
            proposals_np = pos_proposals.cpu().numpy()
            pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
            # compute mask areas of gt instances (batch processing for speedup)
            gt_instance_mask_area = gt_masks.areas
            for i in range(num_pos):
                gt_mask = gt_masks[pos_assigned_gt_inds[i]]

                # crop the gt mask inside the proposal
                bbox = proposals_np[i, :].astype(np.int32)
                gt_mask_in_proposal = gt_mask.crop(bbox)

                ratio = gt_mask_in_proposal.areas[0] / (
                    gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7)
                area_ratios.append(ratio)
            area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to(
                pos_proposals.device)
        else:
            area_ratios = pos_proposals.new_zeros((0, ))
        return area_ratios 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:27,代碼來源:maskiou_head.py

示例8: _get_bp_indexes_labranchor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def _get_bp_indexes_labranchor(self, soi):
        """
        Get indexes of branch point regions in given sequences.

        :param soi: batch of sequences of interest for introns (intron-3..intron+6)
        :return: array of predicted bp indexes
        """
        encoded = [onehot(str(seq)[self.acc_i - 70:self.acc_i]) for seq in np.nditer(soi)]
        labr_in = np.stack(encoded, axis=0)
        out = self.labranchor.predict_on_batch(labr_in)
        # for each row, pick the base with max branchpoint probability, and get its index
        max_indexes = np.apply_along_axis(lambda x: self.acc_i - 70 + np.argmax(x), axis=1, arr=out)
        # self.write_bp(max_indexes)
        return max_indexes

# TODO boilerplate
#    def write_bp(self, max_indexes):
#        max_indexes = [str(seq) for seq in np.nditer(max_indexes)]
#        with open(''.join([this_dir, "/../customBP/example_files/bp_idx_chr21_labr.txt"]), "a") as bp_idx_file:
#            bp_idx_file.write('\n'.join(max_indexes))
#            bp_idx_file.write('\n')
#            bp_idx_file.close() 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:model.py

示例9: apply_transform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def apply_transform(x,
                    transform_matrix,
                    fill_mode='nearest',
                    cval=0.):
    x = np.rollaxis(x, 0, 0)
    final_affine_matrix = transform_matrix[:2, :2]
    final_offset = transform_matrix[:2, 2]
    channel_images = [ndi.interpolation.affine_transform(
        x_channel,
        final_affine_matrix,
        final_offset,
        order=0,
        mode=fill_mode,
        cval=cval) for x_channel in x]
    x = np.stack(channel_images, axis=0)
    x = np.rollaxis(x, 0, 0 + 1)
    return x 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:19,代碼來源:capsulenet.py

示例10: test_lstm_forget_bias

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def test_lstm_forget_bias():
    forget_bias = 2.0
    stack = gluon.rnn.SequentialRNNCell()
    stack.add(gluon.rnn.LSTMCell(100, i2h_bias_initializer=mx.init.LSTMBias(forget_bias), prefix='l0_'))
    stack.add(gluon.rnn.LSTMCell(100, i2h_bias_initializer=mx.init.LSTMBias(forget_bias), prefix='l1_'))

    dshape = (32, 1, 200)
    data = mx.sym.Variable('data')

    sym, _ = stack.unroll(1, data, merge_outputs=True)
    mod = mx.mod.Module(sym, label_names=None, context=mx.cpu(0))
    mod.bind(data_shapes=[('data', dshape)], label_shapes=None)

    mod.init_params()

    bias_argument = next(x for x in sym.list_arguments() if x.endswith('i2h_bias'))
    expected_bias = np.hstack([np.zeros((100,)),
                               forget_bias * np.ones(100, ), np.zeros((2 * 100,))])
    assert_allclose(mod.get_params()[0][bias_argument].asnumpy(), expected_bias) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_gluon_rnn.py

示例11: reset

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def reset(self, indices=None):
    """Reset the environment and convert the resulting observation.

    Args:
      indices: The batch indices of environments to reset; defaults to all.

    Returns:
      Batch of observations.
    """
    if indices is None:
      indices = np.arange(len(self._envs))
    if self._blocking:
      observs = [self._envs[index].reset() for index in indices]
    else:
      observs = [self._envs[index].reset(blocking=False) for index in indices]
      observs = [observ() for observ in observs]
    observ = np.stack(observs)
    return observ 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:20,代碼來源:batch_env.py

示例12: process_outlier_and_stack

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def process_outlier_and_stack(interim_path, file_name, phase_str, datetime, processed_path):
    data_nc = load_pkl(interim_path, file_name)
    # Outlier processing
    for v in obs_var:
        data_nc['input_obs'][v] = process_outlier_and_normalize(data_nc['input_obs'][v], obs_range_dic[v])
    for v in ruitu_var:
        data_nc['input_ruitu'][v] = process_outlier_and_normalize(data_nc['input_ruitu'][v], ruitu_range_dic[v])

    stacked_data = [data_nc['input_obs'][v] for v in obs_var]
    stacked_input_obs = np.stack(stacked_data, axis=-1)

    stacked_data = [data_nc['input_ruitu'][v] for v in ruitu_var]
    stacked_input_ruitu = np.stack(stacked_data, axis=-1)

    print(stacked_input_obs.shape) #(sample_ind, timestep, station_id, features)
    print(stacked_input_ruitu.shape)

    data_dic={'input_obs':stacked_input_obs,
         'input_ruitu':stacked_input_ruitu}
    #normalize

    save_pkl(data_dic, processed_path, '{}_{}_norm.dict'.format(phase_str, datetime)) 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:24,代碼來源:make_TestOnlineData_from_nc.py

示例13: predict

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def predict(self, batch_inputs, batch_ruitu):
        assert batch_ruitu.shape[0] == batch_inputs.shape[0], 'Shape Error'
        assert batch_inputs.shape[1] == 28 and batch_inputs.shape[2] == 10 and batch_inputs.shape[3] == 9, 'Error! Obs input shape must be (None, 28,10,9)'
        assert batch_ruitu.shape[1] == 37 and batch_ruitu.shape[2] == 10 and batch_ruitu.shape[3] == 29, 'Error! Ruitu input shape must be (None, 37,10, 29)'
        #all_pred={}
        pred_result_list = []
        for i in range(10):
            #print('Predict for station: 9000{}'.format(i+1))
            result = self.model.predict(x=[batch_inputs[:,:,i,:], batch_ruitu[:,:,i,:]])
            result = np.squeeze(result, axis=0)
            #all_pred[i] = result
            pred_result_list.append(result)
            #pass

        pred_result = np.stack(pred_result_list, axis=0)
        #return all_pred, pred_result
        print('Predict shape (10,37,3) means (stationID, timestep, features). Features include: t2m, rh2m and w10m')
        self.pred_result = pred_result
        return pred_result 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:21,代碼來源:competition_model_class.py

示例14: __next__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def __next__(self):
        self.count += 1
        img0 = self.imgs.copy()
        if cv2.waitKey(1) == ord('q'):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        # Letterbox
        img = [letterbox(x, new_shape=self.img_size, interp=cv2.INTER_LINEAR)[0] for x in img0]

        # Stack
        img = np.stack(img, 0)

        # Normalize RGB
        img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB
        img = np.ascontiguousarray(img, dtype=np.float16 if self.half else np.float32)  # uint8 to fp16/fp32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        return self.sources, img, img0, None 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:21,代碼來源:datasets.py

示例15: reset

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import stack [as 別名]
def reset(self, indices=None):
    """Reset the environment and convert the resulting observation.

    Args:
      indices: The batch indices of environments to reset; defaults to all.

    Returns:
      Batch of observations.
    """
    if indices is None:
      indices = np.arange(len(self._envs))
    if self._blocking:
      observs = [self._envs[index].reset() for index in indices]
    else:
      observs = [self._envs[index].reset(blocking=False) for index in indices]
      observs = [observ() for observ in observs]
    observ = np.stack(observs)
    # TODO(piotrmilos): Do we really want this?
    observ = observ.astype(np.float32)
    return observ 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:batch_env.py


注:本文中的numpy.stack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。