當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.ndindex方法代碼示例

本文整理匯總了Python中numpy.ndindex方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ndindex方法的具體用法?Python numpy.ndindex怎麽用?Python numpy.ndindex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.ndindex方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_dark_channel

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def get_dark_channel(I, w=15):
    """Get the dark channel prior in the (RGB) image data.
    Parameters
    -----------
    I:  an M * N * 3 numpy array containing data ([0, 255]) in the image where
        M is the height, N is the width, 3 represents R/G/B channels.
    w:  window size
    Return
    -----------
    An M * N array for the dark channel prior ([0, 255]).
    """
    M, N, _ = I.shape
    padded = np.pad(I, ((w // 2, w // 2), (w // 2, w // 2), (0, 0)), 'edge')
    darkch = np.zeros((M, N), dtype=I.dtype)
    for i, j in np.ndindex(darkch.shape):
        # This is from equation 5 in the above mentioned dark channel paper
        darkch[i, j] = np.min(padded[i:i + w, j:j + w, :])
    return darkch 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:20,代碼來源:compute_dark_channel.py

示例2: upscale

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def upscale(image, ratio):
    """
    return upscaled image array
    Arguments:
    image -- a (H,W,C) numpy.ndarray
    ratio -- scaling factor (>1)
    """
    if not isinstance(image, np.ndarray):
        raise ValueError('Expected ndarray')
    if ratio < 1:
        raise ValueError('Ratio must be greater than 1 (ratio=%f)' % ratio)
    width = int(math.floor(image.shape[1] * ratio))
    height = int(math.floor(image.shape[0] * ratio))
    channels = image.shape[2]
    out = np.ndarray((height, width, channels), dtype=np.uint8)
    for x, y in np.ndindex((width, height)):
        out[y, x] = image[int(math.floor(y / ratio)), int(math.floor(x / ratio))]
    return out 
開發者ID:aetros,項目名稱:aetros-cli,代碼行數:20,代碼來源:image.py

示例3: boundaries

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def boundaries(self, boundaries):
        del self._boundaries, self.labels
        self._boundaries = []
        self.labels = labels = []            
        for boundset in boundaries:
            boundarray = numpy.asarray(boundset,dtype=coord_dtype, order='C')
            db = numpy.diff(boundarray)
            if (db <= 0).any():
                raise ValueError('boundary set must be strictly monotonically increasing')
            self._boundaries.append(boundarray)
        self._boundlens = numpy.array([len(boundset) for boundset in self._boundaries], dtype=index_dtype)
        self.ndim = len(self._boundaries)
        self.nbins = numpy.multiply.accumulate([1] + [len(bounds)-1 for bounds in self._boundaries])[-1]

        _boundaries = self._boundaries
        binspace_shape = tuple(self._boundlens[:]-1)
        for index in numpy.ndindex(binspace_shape):
            bounds = [(_boundaries[idim][index[idim]], boundaries[idim][index[idim]+1]) for idim in range(len(_boundaries))]
            labels.append(repr(bounds)) 
開發者ID:westpa,項目名稱:westpa,代碼行數:21,代碼來源:assign.py

示例4: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def __init__(self, **kw):
        super(Chess, self).__init__(**kw)

        w, h = self.frame_size

        self.grid_size = sx, sy = 10, 7
        white_quads = []
        black_quads = []
        for i, j in np.ndindex(sy, sx):
            q = [[j, i, 0], [j+1, i, 0], [j+1, i+1, 0], [j, i+1, 0]]
            [white_quads, black_quads][(i + j) % 2].append(q)
        self.white_quads = np.float32(white_quads)
        self.black_quads = np.float32(black_quads)

        fx = 0.9
        self.K = np.float64([[fx*w, 0, 0.5*(w-1)],
                        [0, fx*w, 0.5*(h-1)],
                        [0.0,0.0,      1.0]])

        self.dist_coef = np.float64([-0.2, 0.1, 0, 0])
        self.t = 0 
開發者ID:makelove,項目名稱:OpenCV-Python-Tutorial,代碼行數:23,代碼來源:video.py

示例5: call

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def call(self, inputs):
    batch_shape = tf.shape(inputs)[:-1]
    length = tf.shape(inputs)[-1]
    ngram_range_counts = []
    for n in range(self.minval, self.maxval):
      # Reshape inputs from [..., length] to [..., 1, length // n, n], dropping
      # remainder elements. Each n-vector is an ngram.
      reshaped_inputs = tf.reshape(
          inputs[..., :(n * (length // n))],
          tf.concat([batch_shape, [1], (length // n)[tf.newaxis], [n]], 0))
      # Count the number of times each ngram appears in the input. We do so by
      # checking whether each n-vector in the input is equal to each n-vector
      # in a Tensor of all possible ngrams. The comparison is batched between
      # the input Tensor of shape [..., 1, length // n, n] and the ngrams Tensor
      # of shape [..., input_dim**n, 1, n].
      ngrams = tf.reshape(
          list(np.ndindex((self.input_dim,) * n)),
          [1] * (len(inputs.shape)-1) + [self.input_dim**n, 1, n])
      is_ngram = tf.equal(
          tf.reduce_sum(tf.cast(tf.equal(reshaped_inputs, ngrams), tf.int32),
                        axis=-1),
          n)
      ngram_counts = tf.reduce_sum(tf.cast(is_ngram, tf.float32), axis=-1)
      ngram_range_counts.append(ngram_counts)
    return tf.concat(ngram_range_counts, axis=-1) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:ngram.py

示例6: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def __init__(self, **kw):
        super(Chess, self).__init__(**kw)

        w, h = self.frame_size

        self.grid_size = sx, sy = 10, 7
        white_quads = []
        black_quads = []
        for i, j in np.ndindex(sy, sx):
            q = [[j, i, 0], [j + 1, i, 0], [j + 1, i + 1, 0], [j, i + 1, 0]]
            [white_quads, black_quads][(i + j) % 2].append(q)
        self.white_quads = np.float32(white_quads)
        self.black_quads = np.float32(black_quads)

        fx = 0.9
        self.K = np.float64([[fx * w, 0, 0.5 * (w - 1)],
                             [0, fx * w, 0.5 * (h - 1)],
                             [0.0, 0.0, 1.0]])

        self.dist_coef = np.float64([-0.2, 0.1, 0, 0])
        self.t = 0 
開發者ID:mengli,項目名稱:MachineLearning,代碼行數:23,代碼來源:video.py

示例7: test_add_chemical_potential

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def test_add_chemical_potential(self):
        """Test adding a chemical potential."""
        self.quad_ham_npc.add_chemical_potential(2.4)

        combined_hermitian_part = self.quad_ham_npc.combined_hermitian_part
        hermitian_part = self.quad_ham_npc.hermitian_part

        want_combined = (self.combined_hermitian -
                         2.4 * numpy.eye(self.n_qubits))
        want_hermitian = self.hermitian_mat

        for i in numpy.ndindex(combined_hermitian_part.shape):
            self.assertAlmostEqual(combined_hermitian_part[i],
                                   want_combined[i])

        for i in numpy.ndindex(hermitian_part.shape):
            self.assertAlmostEqual(hermitian_part[i], want_hermitian[i])

        self.assertAlmostEqual(2.4 + self.chemical_potential,
                               self.quad_ham_npc.chemical_potential) 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:22,代碼來源:_quadratic_hamiltonian_test.py

示例8: test_ndindex

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def test_ndindex():
    x = list(np.ndindex(1, 2, 3))
    expected = [ix for ix, e in np.ndenumerate(np.zeros((1, 2, 3)))]
    assert_array_equal(x, expected)

    x = list(np.ndindex((1, 2, 3)))
    assert_array_equal(x, expected)

    # Test use of scalars and tuples
    x = list(np.ndindex((3,)))
    assert_array_equal(x, list(np.ndindex(3)))

    # Make sure size argument is optional
    x = list(np.ndindex())
    assert_equal(x, [()])

    x = list(np.ndindex(()))
    assert_equal(x, [()])

    # Make sure 0-sized ndindex works correctly
    x = list(np.ndindex(*[0]))
    assert_equal(x, []) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:test_index_tricks.py

示例9: _pool_patches

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def _pool_patches(a, k, strides, padding):
    f = np.ones(k[1:] + [a.shape[-1]])

    out_shape, src = _prepare_patches(a, f, strides, padding, "edge")

    patches = np.empty(tuple(out_shape) + f.shape).astype(a.dtype)

    s = (slice(None),)
    e = (Ellipsis,)
    en = (Ellipsis, np.newaxis)
    for coord in np.ndindex(*out_shape[1:]):
        pos = np.array(strides[1:]) * coord
        patches[s + coord + e] = \
            src[s + tuple(slice(*tpl) for tpl in zip(pos, pos + f.shape[:-1]))][en] * f

    return patches 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:18,代碼來源:tfdeploy.py

示例10: expected_forward_without_reduce

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def expected_forward_without_reduce(self, x_data, t_data, class_weight):
        x = numpy.rollaxis(x_data, 1, x_data.ndim).reshape(
            (t_data.size, x_data.shape[1]))
        t = t_data.ravel()

        loss_shape = x_data.shape[0:1] + x_data.shape[2:]
        loss_expect = numpy.zeros(loss_shape, x_data.dtype)
        for i, (ti, loss_idx) in enumerate(zip(t, numpy.ndindex(*loss_shape))):
            xi = x[i]
            if ti == -1:
                continue
            log_z = numpy.ufunc.reduce(numpy.logaddexp, xi)
            if class_weight is None:
                loss_expect[loss_idx] = -(xi - log_z)[ti]
            else:
                loss_expect[loss_idx] = -(xi - log_z)[ti] * class_weight[ti]
        return numpy.asarray(loss_expect, dtype=x.dtype) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_softmax_cross_entropy.py

示例11: check_forward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def check_forward(self, y):
        y = F.upsampling_2d(
            self.pooled_y, self.indices, ksize=self.ksize,
            stride=self.stride, outsize=self.in_shape[2:])
        if isinstance(y.array, numpy.ndarray):
            y = conv.im2col_cpu(
                y.array, self.ksize, self.ksize, self.stride, self.stride,
                0, 0)
        else:
            y = conv.im2col_gpu(
                y.array, self.ksize, self.ksize, self.stride, self.stride,
                0, 0)
        for i in numpy.ndindex(y.shape):
            n, c, ky, kx, oy, ox = i
            up_y = y[n, c, ky, kx, oy, ox]
            if ky * y.shape[3] + kx == self.indices[n, c, oy, ox]:
                in_y = self.pooled_y.array[n, c, oy, ox]
                testing.assert_allclose(in_y, up_y)
            else:
                testing.assert_allclose(up_y, 0) 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:test_upsampling_2d.py

示例12: test_idxiter

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def test_idxiter():
    n_channels = data.shape[0]
    # Upper-triangular part, including diag
    idx0, idx1 = np.triu_indices(n_channels)
    triu_indices = np.array([np.arange(idx0.size), idx0, idx1])
    triu_indices2 = np.array(list(_idxiter(n_channels, include_diag=True)))
    # Upper-triangular part, without diag
    idx2, idx3 = np.triu_indices(n_channels, 1)
    triu_indices_nodiag = np.array([np.arange(idx2.size), idx2, idx3])
    triu_indices2_nodiag = np.array(list(_idxiter(n_channels,
                                                  include_diag=False)))
    assert_almost_equal(triu_indices, triu_indices2.transpose())
    assert_almost_equal(triu_indices_nodiag, triu_indices2_nodiag.transpose())
    # Upper and lower-triangular parts, without diag
    expected = [(i, j) for _, (i, j) in
                enumerate(np.ndindex((n_channels, n_channels))) if i != j]
    assert_equal(np.array([(i, j) for _, i, j in _idxiter(n_channels,
                                                          triu=False)]),
                 expected) 
開發者ID:mne-tools,項目名稱:mne-features,代碼行數:21,代碼來源:test_utils.py

示例13: _get_Ndim_args_exprs_funcs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def _get_Ndim_args_exprs_funcs(order):
    args = x, y = se.symbols('x y')

    # Higher dimensional inputs
    def f_a(index, _x, _y):
        a, b, c, d = index
        return _x**a + _y**b + (_x+_y)**-d

    nd_exprs_a = np.zeros((3, 5, 1, 4), dtype=object, order=order)
    for index in np.ndindex(*nd_exprs_a.shape):
        nd_exprs_a[index] = f_a(index, x, y)

    def f_b(index, _x, _y):
        a, b, c = index
        return b/(_x + _y)

    nd_exprs_b = np.zeros((1, 7, 1), dtype=object, order=order)
    for index in np.ndindex(*nd_exprs_b.shape):
        nd_exprs_b[index] = f_b(index, x, y)
    return args, nd_exprs_a, nd_exprs_b, f_a, f_b 
開發者ID:symengine,項目名稱:symengine.py,代碼行數:22,代碼來源:test_lambdify.py

示例14: test_Lambdify_Ndimensional_order_C

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def test_Lambdify_Ndimensional_order_C():
    args, nd_exprs_a, nd_exprs_b, f_a, f_b = _get_Ndim_args_exprs_funcs(order='C')
    lmb4 = se.Lambdify(args, nd_exprs_a, nd_exprs_b, order='C')
    nargs = len(args)

    inp_extra_shape = (3, 5, 4)
    inp_shape = inp_extra_shape + (nargs,)
    inp4 = np.arange(reduce(mul, inp_shape)*1.0).reshape(inp_shape, order='C')
    out4a, out4b = lmb4(inp4)
    assert out4a.ndim == 7
    assert out4a.shape == inp_extra_shape + nd_exprs_a.shape
    assert out4b.ndim == 6
    assert out4b.shape == inp_extra_shape + nd_exprs_b.shape
    raises(ValueError, lambda: (lmb4(inp4.T)))
    for b, c, d in np.ndindex(inp_extra_shape):
        _x, _y = inp4[b, c, d, :]
        for index in np.ndindex(*nd_exprs_a.shape):
            assert np.isclose(out4a[(b, c, d) + index], f_a(index, _x, _y))
        for index in np.ndindex(*nd_exprs_b.shape):
            assert np.isclose(out4b[(b, c, d) + index], f_b(index, _x, _y)) 
開發者ID:symengine,項目名稱:symengine.py,代碼行數:22,代碼來源:test_lambdify.py

示例15: test_Lambdify_Ndimensional_order_F

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndindex [as 別名]
def test_Lambdify_Ndimensional_order_F():
    args, nd_exprs_a, nd_exprs_b, f_a, f_b = _get_Ndim_args_exprs_funcs(order='F')
    lmb4 = se.Lambdify(args, nd_exprs_a, nd_exprs_b, order='F')
    nargs = len(args)

    inp_extra_shape = (3, 5, 4)
    inp_shape = (nargs,)+inp_extra_shape
    inp4 = np.arange(reduce(mul, inp_shape)*1.0).reshape(inp_shape, order='F')
    out4a, out4b = lmb4(inp4)
    assert out4a.ndim == 7
    assert out4a.shape == nd_exprs_a.shape + inp_extra_shape
    assert out4b.ndim == 6
    assert out4b.shape == nd_exprs_b.shape + inp_extra_shape
    raises(ValueError, lambda: (lmb4(inp4.T)))
    for b, c, d in np.ndindex(inp_extra_shape):
        _x, _y = inp4[:, b, c, d]
        for index in np.ndindex(*nd_exprs_a.shape):
            assert np.isclose(out4a[index + (b, c, d)], f_a(index, _x, _y))
        for index in np.ndindex(*nd_exprs_b.shape):
            assert np.isclose(out4b[index + (b, c, d)], f_b(index, _x, _y)) 
開發者ID:symengine,項目名稱:symengine.py,代碼行數:22,代碼來源:test_lambdify.py


注:本文中的numpy.ndindex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。