本文整理匯總了Python中numpy.nanmin方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.nanmin方法的具體用法?Python numpy.nanmin怎麽用?Python numpy.nanmin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.nanmin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply_cmap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
'''
apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
they are used to scale z.
Note that this function can automatically rescale data into log-space if the colormap is a
neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
optional argument logrescale=True.
'''
zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
zs = np.asarray(zs, dtype='float')
if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
if logrescale:
if vmin is None: vmin = np.log(np.nanmin(zs))
if vmax is None: vmax = np.log(np.nanmax(zs))
mn = np.exp(vmin)
u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
else:
if vmin is None: vmin = np.nanmin(zs)
if vmax is None: vmax = np.nanmax(zs)
u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
u[np.isnan(u)] = -np.inf
return cmap(u)
示例2: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def __call__(self, transform_xy, x1, y1, x2, y2):
x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
x, y = np.meshgrid(x_, y_)
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
with np.errstate(invalid='ignore'):
if self.lon_cycle is not None:
lon0 = np.nanmin(lon)
# Changed from 180 to 360 to be able to span only
# 90-270 (left hand side)
lon -= 360. * ((lon - lon0) > 360.)
if self.lat_cycle is not None:
lat0 = np.nanmin(lat)
# Changed from 180 to 360 to be able to span only
# 90-270 (left hand side)
lat -= 360. * ((lat - lat0) > 360.)
lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
lon_min, lon_max, lat_min, lat_max = \
self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)
return lon_min, lon_max, lat_min, lat_max
示例3: test_calc_f107a_daily_missing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def test_calc_f107a_daily_missing(self):
""" Test the calc_f107a routine with some daily data missing"""
self.testInst.data = pds.DataFrame({'f107': np.linspace(70, 200, 160)},
index=[pysat.datetime(2009, 1, 1)
+ pds.DateOffset(days=2*i+1)
for i in range(160)])
sw_f107.calc_f107a(self.testInst, f107_name='f107', f107a_name='f107a')
# Assert that new data and metadata exist
assert 'f107a' in self.testInst.data.columns
assert 'f107a' in self.testInst.meta.keys()
# Assert the finite values have realistic means
assert(np.nanmin(self.testInst['f107a'])
> np.nanmin(self.testInst['f107']))
assert(np.nanmax(self.testInst['f107a'])
< np.nanmax(self.testInst['f107']))
# Assert the expected number of fill values
assert(len(self.testInst['f107a'][np.isnan(self.testInst['f107a'])])
== 40)
示例4: test_unsorted_index_lims
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def test_unsorted_index_lims(self):
df = DataFrame({'y': [0., 1., 2., 3.]}, index=[1., 0., 3., 2.])
ax = df.plot()
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data()[0])
assert xmax >= np.nanmax(lines[0].get_data()[0])
df = DataFrame({'y': [0., 1., np.nan, 3., 4., 5., 6.]},
index=[1., 0., 3., 2., np.nan, 3., 2.])
ax = df.plot()
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data()[0])
assert xmax >= np.nanmax(lines[0].get_data()[0])
df = DataFrame({'y': [0., 1., 2., 3.], 'z': [91., 90., 93., 92.]})
ax = df.plot(x='z', y='y')
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data()[0])
assert xmax >= np.nanmax(lines[0].get_data()[0])
示例5: scatter_lims
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def scatter_lims(vals1, vals2=None, buffer=.05):
if vals2 is not None:
vals = np.concatenate((vals1, vals2))
else:
vals = vals1
vmin = np.nanmin(vals)
vmax = np.nanmax(vals)
buf = .05 * (vmax - vmin)
if vmin == 0:
vmin -= buf / 2
else:
vmin -= buf
vmax += buf
return vmin, vmax
################################################################################
# __main__
################################################################################
示例6: scatter_lims
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def scatter_lims(vals1, vals2=None, buffer=.05):
if vals2 is not None:
vals = np.concatenate((vals1, vals2))
else:
vals = vals1
vmin = np.nanmin(vals)
vmax = np.nanmax(vals)
buf = .05 * (vmax - vmin)
if vmin == 0:
vmin -= buf / 2
else:
vmin -= buf
vmax += buf
return vmin, vmax
################################################################################
# nucleotides
# Thanks to Anshul Kundaje, Avanti Shrikumar
# https://github.com/kundajelab/deeplift/tree/master/deeplift/visualization
示例7: findminval_multirasters
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def findminval_multirasters(FileList):
"""
Loops through a list or array of rasters (np arrays)
and finds the minimum single value in the set of arrays.
"""
overall_min_val = 0
for i in range (len(FileList)):
raster_as_array = LSDMap_IO.ReadRasterArrayBlocks(FileList[i])
this_min_val = np.nanmin(raster_as_array)
if this_min_val > overall_min_val:
overall_min_val = this_min_val
print(overall_min_val)
return overall_min_val
示例8: quickMinMax
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def quickMinMax(self, data):
"""
Estimate the min/max values of *data* by subsampling.
Returns [(min, max), ...] with one item per channel
"""
while data.size > 1e6:
ax = np.argmax(data.shape)
sl = [slice(None)] * data.ndim
sl[ax] = slice(None, None, 2)
data = data[sl]
cax = self.axes['c']
if cax is None:
return [(float(nanmin(data)), float(nanmax(data)))]
else:
return [(float(nanmin(data.take(i, axis=cax))),
float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]
示例9: netcdf_to_geojson
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def netcdf_to_geojson(ncfile, var, fourth_dim=None):
realpath = os.path.realpath(ncfile)
name, ext = os.path.splitext(realpath)
X, Y, Z, levels, unit = setup(ncfile, var)
figure = plt.figure()
ax = figure.add_subplot(111)
for t in range(len(Z.time)):
third = Z.isel(time=t)
position = 0
if len(third.dims) == 3:
position = len(getattr(third, third.dims[0]))-1
third = third[position, ]
# local min max
levels = np.linspace(start=np.nanmin(third),
stop=np.nanmax(third), num=20)
contourf = ax.contourf(X, Y, third, levels=levels, cmap=plt.cm.viridis)
geojsoncontour.contourf_to_geojson(
contourf=contourf,
geojson_filepath='{}_{}_t{}_{}.geojson'.format(name, var,
t, position),
ndigits=3,
min_angle_deg=None,
unit=unit
)
示例10: return_normalized_distance_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def return_normalized_distance_matrix(self, input_vector):
"""Return the min-max normalized euclidean-distance matrix between the input vector and the SOM weights.
A value of 0.0 means that the input/weights are equal.
@param input_vector the vector to use for the comparison.
"""
output_matrix = np.zeros((self._matrix_size, self._matrix_size))
it = np.nditer(output_matrix, flags=['multi_index'])
while not it.finished:
#print "%d <%s>" % (it[0], it.multi_index),
dist = self.return_euclidean_distance(input_vector, self._weights_matrix[it.multi_index[0], it.multi_index[1], :])
output_matrix[it.multi_index[0], it.multi_index[1]] = dist
it.iternext()
#min-max normalization
max_value = np.nanmax(output_matrix)
min_value = np.nanmin(output_matrix)
output_matrix = (output_matrix - min_value) / (max_value - min_value)
return output_matrix
示例11: return_similarity_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def return_similarity_matrix(self, input_vector):
"""Return a similarity matrix where a value is 1.0 if the distance input/weight is zero.
@param input_vector the vector to use for the comparison.
"""
output_matrix = np.zeros((self._matrix_size, self._matrix_size))
it = np.nditer(output_matrix, flags=['multi_index'])
while not it.finished:
#print "%d <%s>" % (it[0], it.multi_index),
dist = self.return_euclidean_distance(input_vector, self._weights_matrix[it.multi_index[0], it.multi_index[1], :])
output_matrix[it.multi_index[0], it.multi_index[1]] = dist
it.iternext()
#min-max normalization
max_value = np.nanmax(output_matrix)
min_value = np.nanmin(output_matrix)
output_matrix = (output_matrix - min_value) / (max_value - min_value)
output_matrix = 1.0 - output_matrix
return output_matrix
示例12: fuzzify_partitions
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def fuzzify_partitions(p):
def fuzzify_p(A):
R = np.zeros((A.shape[0], A.shape[1] * p))
cmin, cmax = np.nanmin(A, 0), np.nanmax(A, 0)
psize = (cmax - cmin) / (p - 1)
mus = []
# iterate features
for i in range(A.shape[1]):
# iterate partitions
mu_i = []
offset = cmin[i]
for j in range(p):
f = fl.TriangularSet(offset - psize[i], offset, offset + psize[i])
R[:, (i * p) + j] = f(A[:, i])
mu_i.append(f)
offset += psize[i]
mus.append(mu_i)
return p, R, mus
return fuzzify_p
示例13: fuzzify_mean
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def fuzzify_mean(A):
# output for fuzzified values
R = np.zeros((A.shape[0], A.shape[1] * 3))
cmin, cmax, cmean = np.nanmin(A, 0), np.nanmax(A, 0), np.nanmean(A, 0)
left = np.array([cmin - (cmax - cmin), cmin, cmax]).T
middle = np.array([cmin, cmean, cmax]).T
right = np.array([cmin, cmax, cmax + (cmax - cmin)]).T
mus = []
for i in range(A.shape[1]):
f_l = fl.TriangularSet(*left[i])
f_m = fl.TriangularSet(*middle[i])
f_r = fl.TriangularSet(*right[i])
R[:,(i*3)] = f_l(A[:,i])
R[:,(i*3)+1] = f_m(A[:,i])
R[:,(i*3)+2] = f_r(A[:,i])
mus.extend([(i, f_l), (i, f_m), (i, f_r)])
return 3, R, mus
示例14: scale_for_cmap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def scale_for_cmap(cmap, x, vmin=Ellipsis, vmax=Ellipsis, unit=Ellipsis):
'''
scale_for_cmap(cmap, x) yields the values in x rescaled to be appropriate for the given
colormap cmap. The cmap must be the name of a colormap or a colormap object.
For a given cmap argument, if the object is a colormap itself, it is treated as cmap.name.
If the cmap names a colormap known to neuropythy, neuropythy will rescale the values in x
according to a heuristic.
'''
import matplotlib as mpl
if isinstance(cmap, mpl.colors.Colormap): cmap = cmap.name
(name, cm) = (None, None)
if cmap not in colormaps:
for (k,v) in six.iteritems(colormaps):
if cmap in k:
(name, cm) = (k, v)
break
else: (name, cm) = (cmap, colormaps[cmap])
if cm is not None:
cm = cm if len(cm) == 3 else (cm + (None,))
(cm, (mn,mx), uu) = cm
if vmin is Ellipsis: vmin = mn
if vmax is Ellipsis: vmax = mx
if unit is Ellipsis: unit = uu
if vmin is Ellipsis: vmin = None
if vmax is Ellipsis: vmax = None
if unit is Ellipsis: unit = None
x = pimms.mag(x) if unit is None else pimms.mag(x, unit)
if name is not None and name.startswith('log_'):
emn = np.exp(vmin)
x = np.log(x + emn)
vmin = np.nanmin(x) if vmin is None else vmin
vmax = np.nanmax(x) if vmax is None else vmax
return zdivide(x - vmin, vmax - vmin, null=np.nan)
示例15: _do
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanmin [as 別名]
def _do(self, F, **kwargs):
n, m = F.shape
if self.normalize:
F = normalize(F, self.ideal_point, self.nadir_point, estimate_bounds_if_none=True)
neighbors_finder = NeighborFinder(F, epsilon=0.125, n_min_neigbors="auto", consider_2d=False)
mu = np.full(n, - np.inf)
# for each solution in the set calculate the least amount of improvement per unit deterioration
for i in range(n):
# for each neighbour in a specific radius of that solution
neighbors = neighbors_finder.find(i)
# calculate the trade-off to all neighbours
diff = F[neighbors] - F[i]
# calculate sacrifice and gain
sacrifice = np.maximum(0, diff).sum(axis=1)
gain = np.maximum(0, -diff).sum(axis=1)
np.warnings.filterwarnings('ignore')
tradeoff = sacrifice / gain
# otherwise find the one with the smalled one
mu[i] = np.nanmin(tradeoff)
return find_outliers_upper_tail(mu)