本文整理匯總了Python中numpy.nan方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.nan方法的具體用法?Python numpy.nan怎麽用?Python numpy.nan使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.nan方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: trix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def trix(df, n):
"""Calculate TRIX for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
EX1 = df['Close'].ewm(span=n, min_periods=n).mean()
EX2 = EX1.ewm(span=n, min_periods=n).mean()
EX3 = EX2.ewm(span=n, min_periods=n).mean()
i = 0
ROC_l = [np.nan]
while i + 1 <= df.index[-1]:
ROC = (EX3[i + 1] - EX3[i]) / EX3[i]
ROC_l.append(ROC)
i = i + 1
Trix = pd.Series(ROC_l, name='Trix_' + str(n))
df = df.join(Trix)
return df
示例2: query
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def query(self, coords, order=1):
"""
Returns the map value at the specified location(s) on the sky.
Args:
coords (`astropy.coordinates.SkyCoord`): The coordinates to query.
order (Optional[int]): Interpolation order to use. Defaults to `1`,
for linear interpolation.
Returns:
A float array containing the map value at every input coordinate.
The shape of the output will be the same as the shape of the
coordinates stored by `coords`.
"""
out = np.full(len(coords.l.deg), np.nan, dtype='f4')
for pole in self.poles:
m = (coords.b.deg >= 0) if pole == 'ngp' else (coords.b.deg < 0)
if np.any(m):
data, w = self._data[pole]
x, y = w.wcs_world2pix(coords.l.deg[m], coords.b.deg[m], 0)
out[m] = map_coordinates(data, [y, x], order=order, mode='nearest')
return out
示例3: test_select_confounds_error
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def test_select_confounds_error(confounds_file, tmp_path):
import pandas as pd
import numpy as np
confounds_df = pd.read_csv(str(confounds_file), sep='\t', na_values='n/a')
confounds_df['white_matter'][0] = np.nan
conf_file = tmp_path / "confounds.tsv"
confounds_df.to_csv(str(conf_file), index=False, sep='\t', na_rep='n/a')
with pytest.raises(ValueError) as val_err:
_select_confounds(str(conf_file), ['white_matter', 'csf'])
assert "The selected confounds contain nans" in str(val_err.value)
示例4: wnba_parse_foul
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def wnba_parse_foul(row):
"""
function to determine what type of foul is being commited by the player
Input:
row - row of nba play by play
Output:
foul_type - the foul type of the fould commited by the player
"""
try:
if row["etype"] == 6:
try:
return foul_dict[row["mtype"]]
except KeyError:
return np.nan
return np.nan
except KeyError:
return np.nan
示例5: parse_foul
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def parse_foul(row):
"""
function to determine what type of foul is being commited by the player
Input:
row - row of nba play by play
Output:
foul_type - the foul type of the fould commited by the player
"""
try:
if row["eventmsgtype"] == 6:
try:
return foul_dict[row["eventmsgactiontype"]]
except KeyError:
return np.nan
return np.nan
except KeyError:
return np.nan
示例6: wnba_shot_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def wnba_shot_types(row):
"""
function to parse what type of shot is being taken
Inputs:
row - pandas row of play by play dataframe
Outputs:
shot_type - returns a shot type of the values hook, jump, layup, dunk, tip
"""
try:
if row["etype"] in [1, 2, 3]:
return SHOT_DICT[row["etype"]][row["mtype"]]
else:
return np.nan
except KeyError:
return np.nan
示例7: parse_shot_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def parse_shot_types(row):
"""
function to parse what type of shot is being taken
Inputs:
row - pandas row of play by play dataframe
Outputs:
shot_type - returns a shot type of the values hook, jump, layup, dunk, tip
"""
try:
if row["eventmsgtype"] in [1, 2, 3]:
return SHOT_DICT[row["eventmsgtype"]][row["eventmsgactiontype"]]
else:
return np.nan
except KeyError:
return np.nan
示例8: apply_cmap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
'''
apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
they are used to scale z.
Note that this function can automatically rescale data into log-space if the colormap is a
neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
optional argument logrescale=True.
'''
zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
zs = np.asarray(zs, dtype='float')
if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
if logrescale:
if vmin is None: vmin = np.log(np.nanmin(zs))
if vmax is None: vmax = np.log(np.nanmax(zs))
mn = np.exp(vmin)
u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
else:
if vmin is None: vmin = np.nanmin(zs)
if vmax is None: vmax = np.nanmax(zs)
u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
u[np.isnan(u)] = -np.inf
return cmap(u)
示例9: compute_cor_loc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def compute_cor_loc(num_gt_imgs_per_class,
num_images_correctly_detected_per_class):
"""Compute CorLoc according to the definition in the following paper.
https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf
Returns nans if there are no ground truth images for a class.
Args:
num_gt_imgs_per_class: 1D array, representing number of images containing
at least one object instance of a particular class
num_images_correctly_detected_per_class: 1D array, representing number of
images that are correctly detected at least one object instance of a
particular class
Returns:
corloc_per_class: A float numpy array represents the corloc score of each
class
"""
return np.where(
num_gt_imgs_per_class == 0,
np.nan,
num_images_correctly_detected_per_class / num_gt_imgs_per_class)
示例10: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def __init__(self,
num_groundtruth_classes,
matching_iou_threshold=0.5,
nms_iou_threshold=1.0,
nms_max_output_boxes=10000):
self.per_image_eval = per_image_evaluation.PerImageEvaluation(
num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold,
nms_max_output_boxes)
self.num_class = num_groundtruth_classes
self.groundtruth_boxes = {}
self.groundtruth_class_labels = {}
self.groundtruth_is_difficult_list = {}
self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=int)
self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)
self.detection_keys = set()
self.scores_per_class = [[] for _ in range(self.num_class)]
self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
self.average_precision_per_class = np.empty(self.num_class, dtype=float)
self.average_precision_per_class.fill(np.nan)
self.precisions_per_class = []
self.recalls_per_class = []
self.corloc_per_class = np.ones(self.num_class, dtype=float)
示例11: testReturnsCorrectNanLoss
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def testReturnsCorrectNanLoss(self):
batch_size = 3
num_anchors = 10
code_size = 4
prediction_tensor = tf.ones([batch_size, num_anchors, code_size])
target_tensor = tf.concat([
tf.zeros([batch_size, num_anchors, code_size / 2]),
tf.ones([batch_size, num_anchors, code_size / 2]) * np.nan
], axis=2)
weights = tf.ones([batch_size, num_anchors])
loss_op = losses.WeightedL2LocalizationLoss()
loss = loss_op(prediction_tensor, target_tensor, weights=weights,
ignore_nan_targets=True)
expected_loss = (3 * 5 * 4) / 2.0
with self.test_session() as sess:
loss_output = sess.run(loss)
self.assertAllClose(loss_output, expected_loss)
示例12: plot_results
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def plot_results(start=0, stop=0): # from utils.utils import *; plot_results()
# Plot training results files 'results*.txt'
fig, ax = plt.subplots(2, 5, figsize=(14, 7))
ax = ax.ravel()
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
'val GIoU', 'val Objectness', 'val Classification', 'mAP', 'F1']
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
for i in range(10):
y = results[i, x]
if i in [0, 1, 2, 5, 6, 7]:
y[y == 0] = np.nan # dont show zero loss values
ax[i].plot(x, y, marker='.', label=f.replace('.txt', ''))
ax[i].set_title(s[i])
if i in [5, 6, 7]: # share train and val loss y axes
ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
fig.tight_layout()
ax[1].legend()
fig.savefig('results.png', dpi=200)
示例13: plot_results_overlay
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()
# Plot training results files 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP', 'val', 'val', 'val', 'Recall', 'F1'] # legends
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5))
ax = ax.ravel()
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
if i in [0, 1, 2]:
y[y == 0] = np.nan # dont show zero loss values
ax[i].plot(x, y, marker='.', label=s[j])
ax[i].set_title(t[i])
ax[i].legend()
ax[i].set_ylabel(f) if i == 0 else None # add filename
fig.tight_layout()
fig.savefig(f.replace('.txt', '.png'), dpi=200)
示例14: test_linear_sum_assignment_input_validation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def test_linear_sum_assignment_input_validation():
assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])
C = [[1, 2, 3], [4, 5, 6]]
assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C)))
# assert_array_equal(linear_sum_assignment(C),
# linear_sum_assignment(matrix(C)))
I = np.identity(3)
assert_array_equal(linear_sum_assignment(I.astype(np.bool)), linear_sum_assignment(I))
assert_raises(ValueError, linear_sum_assignment, I.astype(str))
I[0][0] = np.nan
assert_raises(ValueError, linear_sum_assignment, I)
I = np.identity(3)
I[1][1] = np.inf
assert_raises(ValueError, linear_sum_assignment, I)
示例15: OutlierDetection
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nan [as 別名]
def OutlierDetection(CMat, s):
n = np.amax(s)
_, N = CMat.shape
OutlierIndx = list()
FailCnt = 0
Fail = False
for i in range(0, N):
c = CMat[:, i]
if np.sum(np.isnan(c)) >= 1:
OutlierIndx.append(i)
FailCnt += 1
sc = s.astype(float)
sc[OutlierIndx] = np.nan
CMatC = CMat.astype(float)
CMatC[OutlierIndx, :] = np.nan
CMatC[:, OutlierIndx] = np.nan
OutlierIndx = OutlierIndx
if FailCnt > (N - n):
CMatC = np.nan
sc = np.nan
Fail = True
return CMatC, sc, OutlierIndx, Fail