當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.memmap方法代碼示例

本文整理匯總了Python中numpy.memmap方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.memmap方法的具體用法?Python numpy.memmap怎麽用?Python numpy.memmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.memmap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: walk

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def walk(self, size):
        if self.eof: return None
        end_point = self.offset + 4 * size
        assert end_point <= self.size, \
        'Over-read {}'.format(self.path)

        float32_1D_array = np.memmap(
            self.path, shape = (), mode = 'r', 
            offset = self.offset,
            dtype='({})float32,'.format(size)
        )

        self.offset = end_point
        if end_point == self.size: 
            self.eof = True
        return float32_1D_array 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:18,代碼來源:loader.py

示例2: flush

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def flush(self):
        """
        Write any changes in the array to the file on disk.

        For further information, see `memmap`.

        Parameters
        ----------
        None

        See Also
        --------
        memmap

        """
        if self.base is not None and hasattr(self.base, 'flush'):
            self.base.flush() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:memmap.py

示例3: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def __init__(self, sglx_file):
        self.file_bin = Path(sglx_file)
        self.nbytes = self.file_bin.stat().st_size
        file_meta_data = Path(sglx_file).with_suffix('.meta')
        if not file_meta_data.exists():
            self.file_meta_data = None
            self.meta = None
            self.channel_conversion_sample2v = 1
            _logger.warning(str(sglx_file) + " : no metadata file found. Very limited support")
            return
        # normal case we continue reading and interpreting the metadata file
        self.file_meta_data = file_meta_data
        self.meta = read_meta_data(file_meta_data)
        self.channel_conversion_sample2v = _conversion_sample2v_from_meta(self.meta)
        # if we are not looking at a compressed file, use a memmap, otherwise instantiate mtscomp
        if self.is_mtscomp:
            self.data = mtscomp.Reader()
            self.data.open(self.file_bin, self.file_bin.with_suffix('.ch'))
        else:
            if self.nc * self.ns * 2 != self.nbytes:
                _logger.warning(str(sglx_file) + " : meta data and filesize do not checkout")
            self.data = np.memmap(sglx_file, dtype='int16', mode='r', shape=(self.ns, self.nc)) 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:24,代碼來源:spikeglx.py

示例4: _readData1

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def _readData1(self, fd, meta, mmap=False, **kwds):
        ## Read array data from the file descriptor for MetaArray v1 files
        ## read in axis values for any axis that specifies a length
        frameSize = 1
        for ax in meta['info']:
            if 'values_len' in ax:
                ax['values'] = np.fromstring(fd.read(ax['values_len']), dtype=ax['values_type'])
                frameSize *= ax['values_len']
                del ax['values_len']
                del ax['values_type']
        self._info = meta['info']
        if not kwds.get("readAllData", True):
            return
        ## the remaining data is the actual array
        if mmap:
            subarr = np.memmap(fd, dtype=meta['type'], mode='r', shape=meta['shape'])
        else:
            subarr = np.fromstring(fd.read(), dtype=meta['type'])
            subarr.shape = meta['shape']
        self._data = subarr 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:22,代碼來源:MetaArray.py

示例5: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def __init__(self, path):
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
                offset = stream.tell()

            _warmup_mmap_file(path)

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
            self._sizes = np.frombuffer(self._bin_buffer, dtype=np.int32, count=self._len, offset=offset)
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:26,代碼來源:indexed_dataset.py

示例6: perform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def perform(self, node, inp, out):
        input, = inp
        storage, = out
        # drop
        res = input
        if type(res) != numpy.ndarray and type(res) != numpy.memmap:
            raise TypeError(res)

        # transpose
        res = res.transpose(self.shuffle + self.drop)

        # augment
        shape = list(res.shape[:len(self.shuffle)])
        for augm in self.augment:
            shape.insert(augm, 1)
        res = res.reshape(shape)

        # copy (if not inplace)
        if not self.inplace:
            res = numpy.copy(res)

        storage[0] = numpy.asarray(res)  # asarray puts scalars back into array 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:elemwise.py

示例7: test_allocate_arrays

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def test_allocate_arrays(self):
        shape = (30, 1000)
        dtype = 'int16'

        arr_in_memory = self.RX.allocate_array(shape=shape, dtype=dtype, memmap=False)
        arr_memmap = self.RX.allocate_array(shape=shape, dtype=dtype, memmap=True)

        assert isinstance(arr_in_memory, np.ndarray)
        assert isinstance(arr_memmap, np.memmap)
        assert arr_in_memory.shape == shape
        assert arr_memmap.shape == shape
        assert arr_in_memory.dtype == dtype
        assert arr_memmap.dtype == dtype

        arr_in_memory = self.SX.allocate_array(shape=shape, dtype=dtype, memmap=False)
        arr_memmap = self.SX.allocate_array(shape=shape, dtype=dtype, memmap=True)

        assert isinstance(arr_in_memory, np.ndarray)
        assert isinstance(arr_memmap, np.memmap)
        assert arr_in_memory.shape == shape
        assert arr_memmap.shape == shape
        assert arr_in_memory.dtype == dtype
        assert arr_memmap.dtype == dtype 
開發者ID:SpikeInterface,項目名稱:spikeextractors,代碼行數:25,代碼來源:test_extractors.py

示例8: makeMemMapRaw

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def makeMemMapRaw(binFullPath, meta):
    nChan = int(meta['nSavedChans'])
    nFileSamp = int(int(meta['fileSizeBytes'])/(2*nChan))
    print("nChan: %d, nFileSamp: %d" % (nChan, nFileSamp))
    rawData = np.memmap(binFullPath, dtype='int16', mode='r',
                        shape=(nChan, nFileSamp), offset=0, order='F')
    return(rawData)


# Return an array [lines X timepoints] of uint8 values for a
# specified set of digital lines.
#
# - dwReq is the zero-based index into the saved file of the
#    16-bit word that contains the digital lines of interest.
# - dLineList is a zero-based list of one or more lines/bits
#    to scan from word dwReq.
# 
開發者ID:SpikeInterface,項目名稱:spikeextractors,代碼行數:19,代碼來源:readSGLX.py

示例9: load

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def load(self, path, num_examples_limit: Optional[int] = None):
        with PathManager.open(path, "rb") as f:
            npz = np.load(f)

            # For big input data, we don't want the cpu to OOM.
            # Therefore, we are loading the huge buffer array into disc
            # and reading it from disc instead of memory.
            if npz["buffer"].nbytes > ARRAY_SIZE_LIMIT_FOR_MEMORY:
                self.buffer = np.memmap(
                    tempfile.NamedTemporaryFile().name,
                    dtype="float32",
                    mode="w+",
                    shape=npz["buffer"].shape,
                )
                self.buffer[:] = npz["buffer"][:]
            else:
                self.buffer = npz["buffer"]
            self.offsets = npz["offsets"]

        if num_examples_limit is not None and len(self.offsets) > num_examples_limit:
            self.offsets = self.offsets[: num_examples_limit + 1]
            self.buffer = self.buffer[: self.offsets[-1]]
        self.sizes = self.offsets[1:] - self.offsets[:-1] 
開發者ID:pytorch,項目名稱:translate,代碼行數:25,代碼來源:data.py

示例10: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def __init__(self, hash_name='md5', coerce_mmap=False):
        """
            Parameters
            ----------
            hash_name: string
                The hash algorithm to be used
            coerce_mmap: boolean
                Make no difference between np.memmap and np.ndarray
                objects.
        """
        self.coerce_mmap = coerce_mmap
        Hasher.__init__(self, hash_name=hash_name)
        # delayed import of numpy, to avoid tight coupling
        import numpy as np
        self.np = np
        if hasattr(np, 'getbuffer'):
            self._getbuffer = np.getbuffer
        else:
            self._getbuffer = memoryview 
開發者ID:fridiculous,項目名稱:estimators,代碼行數:21,代碼來源:hashing.py

示例11: hash

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def hash(obj, hash_name='md5', coerce_mmap=False):
    """ Quick calculation of a hash to identify uniquely Python objects
        containing numpy arrays.
        Parameters
        -----------
        hash_name: 'md5' or 'sha1'
            Hashing algorithm used. sha1 is supposedly safer, but md5 is
            faster.
        coerce_mmap: boolean
            Make no difference between np.memmap and np.ndarray
    """
    if 'numpy' in sys.modules:
        hasher = NumpyHasher(hash_name=hash_name, coerce_mmap=coerce_mmap)
    else:
        hasher = Hasher(hash_name=hash_name)
    return hasher.hash(obj) 
開發者ID:fridiculous,項目名稱:estimators,代碼行數:18,代碼來源:hashing.py

示例12: _gen_prediction_array

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def _gen_prediction_array(self, task, job, threading):
        """Generate prediction array either in-memory or persist to disk."""
        shape = task.shape(job)
        if threading:
            self.job.predict_out = np.zeros(shape, dtype=_dtype(task))
        else:
            f = os.path.join(self.job.dir, '%s_out_array.mmap' % task.name)
            try:
                self.job.predict_out = np.memmap(
                    filename=f, dtype=_dtype(task), mode='w+', shape=shape)
            except Exception as exc:
                raise OSError(
                    "Cannot create prediction matrix of shape ("
                    "%i, %i), size %i MBs, for %s.\n Details:\n%r" %
                    (shape[0], shape[1], 8 * shape[0] * shape[1] / (1024 ** 2),
                     task.name, exc)) 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:18,代碼來源:backend.py

示例13: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def __init__(self, path):
        self.eof = False # end of file
        self.path = path  # current pos
        if path is None: 
            self.eof = True
            return
        else: 
            self.size = os.path.getsize(path)# save the path
            major, minor, revision, seen = np.memmap(path,
                shape = (), mode = 'r', offset = 0,
                dtype = '({})i4,'.format(4))
            self.transpose = major > 1000 or minor > 1000
            self.offset = 16 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:15,代碼來源:loader.py

示例14: raw_data_from_fileobj

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def raw_data_from_fileobj(self, fileobj):
        """Returns memmap array of raw unscaled image data.

        Array axes correspond to x,y,z,t.
        """
        # memmap the data -- it is guaranteed to be uncompressed and all
        # properties are known
        # read in Fortran order to have spatial axes first
        data = np.memmap(fileobj,
                         dtype=self.get_data_dtype(),
                         mode='c', # copy-on-write
                         shape=self.get_data_shape_in_file(),
                         order='F')
        return data 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:16,代碼來源:parrec.py

示例15: memmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import memmap [as 別名]
def memmap(self, dtype=np.uint8, mode=None, offset=None, shape=None,
               order='C'):
        """Map part of the file in memory.

        Note that the map cannnot span multiple underlying files.
        Parameters are as for `~numpy.memmap`.
        """
        if self.closed:
            raise ValueError('memmap of closed file.')

        dtype = np.dtype(dtype)

        if mode is None:
            mode = self.mode.replace('b', '')

        if offset is not None and offset != self.tell():
            # seek will fail for SequentialFileWriter, so we try to avoid it.
            self.seek(offset)
        elif self.fh.tell() == self._file_sizes[self.file_nr]:
            self._open(self.file_nr + 1)

        if shape is None:
            count = self.size - self.tell()
            if count % dtype.itemsize:
                raise ValueError("size of available data is not a "
                                 "multiple of the data-type size.")
            shape = (count // dtype.itemsize,)
        else:
            if not isinstance(shape, tuple):
                shape = (shape,)
            count = dtype.itemsize
            for k in shape:
                count *= k

        if self.fh.tell() + count > self._file_sizes[self.file_nr]:
            raise ValueError('mmap length exceeds individual file size')

        file_offset = self.fh.tell()
        mm = np.memmap(self.fh, dtype, mode, file_offset, shape, order)
        self.fh.seek(file_offset + count)
        return mm 
開發者ID:mhvk,項目名稱:baseband,代碼行數:43,代碼來源:sequentialfile.py


注:本文中的numpy.memmap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。