當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.loadtxt方法代碼示例

本文整理匯總了Python中numpy.loadtxt方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.loadtxt方法的具體用法?Python numpy.loadtxt怎麽用?Python numpy.loadtxt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.loadtxt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: classify_1nn

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def classify_1nn(data_train, data_test):
    '''
    Classification using 1NN
    Inputs: data_train, data_test: train and test csv file path
    Outputs: yprediction and accuracy
    '''
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.preprocessing import StandardScaler
    data = {'src': np.loadtxt(data_train, delimiter=','),
            'tar': np.loadtxt(data_test, delimiter=','),
            }
    Xs, Ys, Xt, Yt = data['src'][:, :-1], data['src'][:, -
                                                      1], data['tar'][:, :-1], data['tar'][:, -1]
    Xs = StandardScaler(with_mean=0, with_std=1).fit_transform(Xs)
    Xt = StandardScaler(with_mean=0, with_std=1).fit_transform(Xt)
    clf = KNeighborsClassifier(n_neighbors=1)
    clf.fit(Xs, Ys)
    ypred = clf.predict(Xt)
    acc = accuracy_score(y_true=Yt, y_pred=ypred)
    print('Acc: {:.4f}'.format(acc))
    return ypred, acc 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:24,代碼來源:main.py

示例2: breastcancer_cont

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def breastcancer_cont(replication=2):
    f = open(path + "breast_cancer_wisconsin_cont.txt", "r")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_train = np.array(data[:, range(0, 9)])
    y_train = np.array(data[:, 9])
    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(0, 9)]])
        y_train = np.hstack([y_train, data[:, 9]])
    x_train = np.array(x_train, dtype=np.float)

    f = open(path + "breast_cancer_wisconsin_cont_test.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_test = np.array(data[:, range(0, 9)])
    y_test = np.array(data[:, 9])
    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(0, 9)]])
        y_test = np.hstack([y_test, data[:, 9]])
    x_test = np.array(x_test, dtype=np.float)

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:22,代碼來源:datasets.py

示例3: breastcancer_disc

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def breastcancer_disc(replication=2):
    f = open(path + "breast_cancer_wisconsin_disc.txt")
    data = np.loadtxt(f, delimiter=",")
    x_train = data[:, range(1, 10)]
    y_train = data[:, 10]
    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(1, 10)]])
        y_train = np.hstack([y_train, data[:, 10]])

    f = open(path + "breast_cancer_wisconsin_disc_test.txt")
    data = np.loadtxt(f, delimiter=",")
    x_test = data[:, range(1, 10)]
    y_test = data[:, 10]
    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(1, 10)]])
        y_test = np.hstack([y_test, data[:, 10]])

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:20,代碼來源:datasets.py

示例4: iris

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def iris(replication=2):
    f = open(path + "iris.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_train = np.array(data[:, range(0, 4)], dtype=np.float)
    y_train = data[:, 4]

    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(0, 4)]])
        y_train = np.hstack([y_train, data[:, 4]])
    x_train = np.array(x_train, dtype=np.float)

    f = open(path + "iris_test.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_test = np.array(data[:, range(0, 4)], dtype=np.float)
    y_test = data[:, 4]

    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(0, 4)]])
        y_test = np.hstack([y_test, data[:, 4]])
    x_test = np.array(x_test, dtype=np.float)

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:24,代碼來源:datasets.py

示例5: regression_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def regression_data():
    f = open(path + "regression_data1.txt")
    data = np.loadtxt(f, delimiter=",")
    x1 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y1 = data[:, 1]
    f = open(path + "regression_data2.txt")
    data = np.loadtxt(f, delimiter=",")
    x2 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y2 = data[:, 1]
    x1 = np.vstack((x1, x2))
    y1 = np.hstack((y1, y2))

    f = open(path + "regression_data_test1.txt")
    data = np.loadtxt(f, delimiter=",")
    x1_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y1_test = data[:, 1]
    f = open(path + "regression_data_test2.txt")
    data = np.loadtxt(f, delimiter=",")
    x2_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y2_test = data[:, 1]
    x1_test = np.vstack((x1_test, x2_test))
    y1_test = np.hstack((y1_test, y2_test))
    return x1, y1, x1_test, y1_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:25,代碼來源:datasets.py

示例6: collect_room

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def collect_room(building_name, room_name):
  room_dir = os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2', building_name,
                          room_name, 'Annotations')
  files = glob.glob1(room_dir, '*.txt')
  files = sorted(files, key=lambda s: s.lower())
  vertexs = []; colors = [];
  for f in files:
    file_name = os.path.join(room_dir, f)
    logging.info('  %s', file_name)
    a = np.loadtxt(file_name)
    vertex = a[:,:3]*1.
    color = a[:,3:]*1
    color = color.astype(np.uint8)
    vertexs.append(vertex)
    colors.append(color)
  files = [f.split('.')[0] for f in files]
  out = {'vertexs': vertexs, 'colors': colors, 'names': files}
  return out 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:script_preprocess_annoations_S3DIS.py

示例7: print_mutation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def print_mutation(hyp, results, bucket=''):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = '%10.3g' * len(results) % results  # results (P, R, mAP, F1, test_loss)
    print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

    if bucket:
        os.system('gsutil cp gs://%s/evolve.txt .' % bucket)  # download evolve.txt

    with open('evolve.txt', 'a') as f:  # append result
        f.write(c + b + '\n')
    x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
    np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g')  # save sort by fitness

    if bucket:
        os.system('gsutil cp evolve.txt gs://%s' % bucket)  # upload evolve.txt 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:19,代碼來源:utils.py

示例8: plot_evolution_results

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def plot_evolution_results(hyp):  # from utils.utils import *; plot_evolution_results(hyp)
    # Plot hyperparameter evolution results in evolve.txt
    x = np.loadtxt('evolve.txt', ndmin=2)
    f = fitness(x)
    weights = (f - f.min()) ** 2  # for weighted results
    fig = plt.figure(figsize=(12, 10))
    matplotlib.rc('font', **{'size': 8})
    for i, (k, v) in enumerate(hyp.items()):
        y = x[:, i + 5]
        # mu = (y * weights).sum() / weights.sum()  # best weighted result
        mu = y[f.argmax()]  # best single result
        plt.subplot(4, 5, i + 1)
        plt.plot(mu, f.max(), 'o', markersize=10)
        plt.plot(y, f, '.')
        plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9})  # limit to 40 characters
        print('%15s: %.3g' % (k, mu))
    fig.tight_layout()
    plt.savefig('evolve.png', dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:20,代碼來源:utils.py

示例9: plot_results

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def plot_results(start=0, stop=0):  # from utils.utils import *; plot_results()
    # Plot training results files 'results*.txt'
    fig, ax = plt.subplots(2, 5, figsize=(14, 7))
    ax = ax.ravel()
    s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
         'val GIoU', 'val Objectness', 'val Classification', 'mAP', 'F1']
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        for i in range(10):
            y = results[i, x]
            if i in [0, 1, 2, 5, 6, 7]:
                y[y == 0] = np.nan  # dont show zero loss values
            ax[i].plot(x, y, marker='.', label=f.replace('.txt', ''))
            ax[i].set_title(s[i])
            if i in [5, 6, 7]:  # share train and val loss y axes
                ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])

    fig.tight_layout()
    ax[1].legend()
    fig.savefig('results.png', dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:24,代碼來源:utils.py

示例10: plot_results_overlay

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def plot_results_overlay(start=0, stop=0):  # from utils.utils import *; plot_results_overlay()
    # Plot training results files 'results*.txt', overlaying train and val losses
    s = ['train', 'train', 'train', 'Precision', 'mAP', 'val', 'val', 'val', 'Recall', 'F1']  # legends
    t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1']  # titles
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        fig, ax = plt.subplots(1, 5, figsize=(14, 3.5))
        ax = ax.ravel()
        for i in range(5):
            for j in [i, i + 5]:
                y = results[j, x]
                if i in [0, 1, 2]:
                    y[y == 0] = np.nan  # dont show zero loss values
                ax[i].plot(x, y, marker='.', label=s[j])
            ax[i].set_title(t[i])
            ax[i].legend()
            ax[i].set_ylabel(f) if i == 0 else None  # add filename
        fig.tight_layout()
        fig.savefig(f.replace('.txt', '.png'), dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:23,代碼來源:utils.py

示例11: test_2x3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def test_2x3(self):
        # Loading the water depth map
        dat = loadtxt('data/WaterDepth1.dat')
        X, Y = meshgrid(linspace(0., 1000., 50), linspace(0., 1000., 50))
        depth = array(zip(X.flatten(), Y.flatten(), dat.flatten()))
        borders = array([[200, 200], [150, 500], [200, 800], [600, 900], [700, 700], [900, 500], [800, 200], [500, 100], [200, 200]])
        baseline = array([[587.5, 223.07692308], [525., 346.15384615], [837.5, 530.76923077], [525., 530.76923077], [525., 838.46153846], [837.5, 469.23076923]])

        wt_desc = WTDescFromWTG('data/V80-2MW-offshore.wtg').wt_desc
        wt_layout = GenericWindFarmTurbineLayout([WTPC(wt_desc=wt_desc, position=pos) for pos in baseline])

        t = Topfarm(
            baseline_layout = wt_layout,
            borders = borders,
            depth_map = depth,
            dist_WT_D = 5.0,
            distribution='spiral',
            wind_speeds=[4., 8., 20.],
            wind_directions=linspace(0., 360., 36)[:-1]
        )

        t.run()

        self.fail('make save function')
        t.save() 
開發者ID:DTUWindEnergy,項目名稱:TOPFARM,代碼行數:27,代碼來源:test_topfarm.py

示例12: load_csv

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def load_csv(path):
    """Load data from a CSV file.

    Args:
        path (str): A path to the CSV format file containing data.
        dense (boolean): An optional variable indicating if the return matrix
                         should be dense.  By default, it is false.

    Returns:
        Data matrix X and target vector y
    """

    with open(path) as f:
        line = f.readline().strip()

    X = np.loadtxt(path, delimiter=',',
                   skiprows=0 if is_number(line.split(',')[0]) else 1)

    y = np.array(X[:, 0]).flatten()
    X = X[:, 1:]

    return X, y 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:24,代碼來源:data_io.py

示例13: calcfbetaInput

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def calcfbetaInput(self):
        # table 17 in Leinert et al. (1998)
        # Zodiacal Light brightness function of solar LON (rows) and LAT (columns)
        # values given in W m−2 sr−1 μm−1 for a wavelength of 500 nm
        path = os.path.split(inspect.getfile(self.__class__))[0]
        Izod = np.loadtxt(os.path.join(path, 'Leinert98_table17.txt'))*1e-8 # W/m2/sr/um
        # create data point coordinates
        lon_pts = np.array([0., 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 75, 90,
                105, 120, 135, 150, 165, 180]) # deg
        lat_pts = np.array([0., 5, 10, 15, 20, 25, 30, 45, 60, 75, 90]) # deg
        y_pts, x_pts = np.meshgrid(lat_pts, lon_pts)
        points = np.array(list(zip(np.concatenate(x_pts), np.concatenate(y_pts))))
        # create data values, normalized by (90,0) value
        z = Izod/Izod[12,0]
        values = z.reshape(z.size)
        return  points, values 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:18,代碼來源:Stark.py

示例14: get_datasets

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def get_datasets(args):

    cinfo = None
    if args.categoryfile:
        #categories = numpy.loadtxt(args.categoryfile, dtype=str, delimiter="\n").tolist()
        categories = [line.rstrip('\n') for line in open(args.categoryfile)]
        categories.sort()
        c_to_idx = {categories[i]: i for i in range(len(categories))}
        cinfo = (categories, c_to_idx)

    if args.dataset_type == 'modelnet':
        transform = torchvision.transforms.Compose([\
                ptlk.data.transforms.Mesh2Points(),\
                ptlk.data.transforms.OnUnitCube(),\
            ])

        testdata = ptlk.data.datasets.ModelNet(args.dataset_path, train=0, transform=transform, classinfo=cinfo)

    return testdata 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:21,代碼來源:generate_rotations.py

示例15: test_values_of_indicators

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import loadtxt [as 別名]
def test_values_of_indicators(self):
        l = [
            (GD, "gd"),
            (IGD, "igd")
        ]
        folder = os.path.join(get_pymoo(), "tests", "performance_indicator")
        pf = np.loadtxt(os.path.join(folder, "performance_indicators.pf"))

        for indicator, ext in l:

            for i in range(1, 5):
                F = np.loadtxt(os.path.join(folder, "performance_indicators_%s.f" % i))

                val = indicator(pf).calc(F)
                correct = np.loadtxt(os.path.join(folder, "performance_indicators_%s.%s" % (i, ext)))
                self.assertTrue(correct == val) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:18,代碼來源:test_performance_indicator.py


注:本文中的numpy.loadtxt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。