當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.flipud方法代碼示例

本文整理匯總了Python中numpy.flipud方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.flipud方法的具體用法?Python numpy.flipud怎麽用?Python numpy.flipud使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.flipud方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: quadrature_cc_1D

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def quadrature_cc_1D(N):
    """ Computes the Clenshaw Curtis nodes and weights """
    N = np.int(N)        
    if N == 1:
        knots = 0
        weights = 2
    else:
        n = N - 1
        C = np.zeros((N,2))
        k = 2*(1+np.arange(np.floor(n/2)))
        C[::2,0] = 2/np.hstack((1, 1-k*k))
        C[1,1] = -n
        V = np.vstack((C,np.flipud(C[1:n,:])))
        F = np.real(ifft(V, n=None, axis=0))
        knots = F[0:N,1]
        weights = np.hstack((F[0,0],2*F[1:n,0],F[n,0]))
            
    return knots, weights 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:20,代碼來源:grid.py

示例2: convert_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def convert_image(self, filename):
        pic = img.imread(filename)
        # Set FFT size to be double the image size so that the edge of the spectrum stays clear
        # preventing some bandfilter artifacts
        self.NFFT = 2*pic.shape[1]

        # Repeat image lines until each one comes often enough to reach the desired line time
        ffts = (np.flipud(np.repeat(pic[:, :, 0], self.repetitions, axis=0) / 16.)**2.) / 256.

        # Embed image in center bins of the FFT
        fftall = np.zeros((ffts.shape[0], self.NFFT))
        startbin = int(self.NFFT/4)
        fftall[:, startbin:(startbin+pic.shape[1])] = ffts

        # Generate random phase vectors for the FFT bins, this is important to prevent high peaks in the output
        # The phases won't be visible in the spectrum
        phases = 2*np.pi*np.random.rand(*fftall.shape)
        rffts = fftall * np.exp(1j*phases)

        # Perform the FFT per image line, then concatenate them to form the final signal
        timedata = np.fft.ifft(np.fft.ifftshift(rffts, axes=1), axis=1) / np.sqrt(float(self.NFFT))
        linear = timedata.flatten()
        linear = linear / np.max(np.abs(linear))
        return linear 
開發者ID:polygon,項目名稱:spectrum_painter,代碼行數:26,代碼來源:spectrum_painter.py

示例3: save_movie_to_frame

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def save_movie_to_frame(images, filename, idx=0, cmap='Blues'):
    # Collect to single image
    image = movie_to_frame(images[idx])

    # Flip it
    # image = np.fliplr(image)
    # image = np.flipud(image)

    f = plt.figure(figsize=[12, 12])
    plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1)

    plt.axis('image')
    plt.xticks([])
    plt.yticks([])
    plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
    plt.close(f) 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:18,代碼來源:movie.py

示例4: test_flip_axis

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def test_flip_axis():
    a = np.arange(24).reshape((2,3,4))
    assert_array_equal(
        flip_axis(a),
        np.flipud(a))
    assert_array_equal(
        flip_axis(a, axis=0),
        np.flipud(a))
    assert_array_equal(
        flip_axis(a, axis=1),
        np.fliplr(a))
    # check accepts array-like
    assert_array_equal(
        flip_axis(a.tolist(), axis=0),
        np.flipud(a))
    # third dimension
    b = a.transpose()
    b = np.flipud(b)
    b = b.transpose()
    assert_array_equal(flip_axis(a, axis=2), b) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:22,代碼來源:test_orientations.py

示例5: test_closest_canonical

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def test_closest_canonical():
    arr = np.arange(24).reshape((2,3,4,1))
    # no funky stuff, returns same thing
    img = Nifti1Image(arr, np.eye(4))
    xyz_img = as_closest_canonical(img)
    assert_true(img is xyz_img)
    # a axis flip
    img = Nifti1Image(arr, np.diag([-1,1,1,1]))
    xyz_img = as_closest_canonical(img)
    assert_false(img is xyz_img)
    out_arr = xyz_img.get_data()
    assert_array_equal(out_arr, np.flipud(arr))
    # no error for enforce_diag in this case
    xyz_img = as_closest_canonical(img, True)
    # but there is if the affine is not diagonal
    aff = np.eye(4)
    aff[0,1] = 0.1
    # although it's more or less canonical already
    img = Nifti1Image(arr, aff)
    xyz_img = as_closest_canonical(img)
    assert_true(img is xyz_img)
    # it's still not diagnonal
    assert_raises(OrientationError, as_closest_canonical, img, True) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:25,代碼來源:test_funcs.py

示例6: decompose_projection_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def decompose_projection_matrix(P, return_t=True):
  if P.shape[0] != 3 or P.shape[1] != 4:
    raise Exception('P has to be 3x4')
  M = P[:, :3]
  C = -np.linalg.inv(M) @ P[:, 3:]

  R,K = np.linalg.qr(np.flipud(M).T)
  K = np.flipud(K.T)
  K = np.fliplr(K)
  R = np.flipud(R.T)

  T = np.diag(np.sign(np.diag(K)))
  K = K @ T
  R = T @ R

  if np.linalg.det(R) < 0:
    R *= -1

  K /= K[2,2]
  if return_t:
    return K, R, cameracenter_to_translation(R, C)
  else:
    return K, R, C 
開發者ID:autonomousvision,項目名稱:connecting_the_dots,代碼行數:25,代碼來源:geometry.py

示例7: draw_lane_fit

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def draw_lane_fit(undist, warped ,Minv, left_fitx, right_fitx, ploty):
	# Drawing
	# Create an image to draw the lines on
	warp_zero = np.zeros_like(warped).astype(np.uint8)
	color_warp = np.dstack((warp_zero, warp_zero, warp_zero))

	# Recast the x and y points into usable format for cv2.fillPoly()
	pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
	pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
	pts = np.hstack((pts_left, pts_right))

	# Draw the lane onto the warped blank image
	cv2.fillPoly(color_warp, np.int_([pts]), (0,255,0))

	# Warp the blank back to original image space using inverse perspective matrix(Minv)
	newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0]))
	# Combine the result with the original image
	result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)

	return result 
開發者ID:ChengZhongShen,項目名稱:Advanced_Lane_Lines,代碼行數:22,代碼來源:image_process.py

示例8: calc_axon_contribution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def calc_axon_contribution(self, axons):
        xyret = np.column_stack((self.grid.xret.ravel(),
                                 self.grid.yret.ravel()))
        # Only include axon segments that are < `max_d2` from the soma. These
        # axon segments will have `sensitivity` > `self.min_ax_sensitivity`:
        max_d2 = -2.0 * self.axlambda ** 2 * np.log(self.min_ax_sensitivity)
        axon_contrib = []
        for xy, bundle in zip(xyret, axons):
            idx = np.argmin((bundle[:, 0] - xy[0]) ** 2 +
                            (bundle[:, 1] - xy[1]) ** 2)
            # Cut off the part of the fiber that goes beyond the soma:
            axon = np.flipud(bundle[0: idx + 1, :])
            # Add the exact location of the soma:
            axon = np.insert(axon, 0, xy, axis=0)
            # For every axon segment, calculate distance from soma by
            # summing up the individual distances between neighboring axon
            # segments (by "walking along the axon"):
            d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 +
                           np.diff(axon[:, 1], axis=0) ** 2)
            idx_d2 = d2 < max_d2
            sensitivity = np.exp(-d2[idx_d2] / (2.0 * self.axlambda ** 2))
            idx_d2 = np.insert(idx_d2, 0, False)
            contrib = np.column_stack((axon[idx_d2, :], sensitivity))
            axon_contrib.append(contrib)
        return axon_contrib 
開發者ID:pulse2percept,項目名稱:pulse2percept,代碼行數:27,代碼來源:beyeler2019.py

示例9: rank_sites_by_record_count

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def rank_sites_by_record_count(database, threshold=0):
    """
    Function to determine count the number of records per site and return
    the list ranked in descending order
    """
    name_id_list = [(rec.site.id, rec.site.name) for rec in database.records]
    name_id = dict([])
    for name_id_pair in name_id_list:
        if name_id_pair[0] in name_id:
            name_id[name_id_pair[0]]["Count"] += 1
        else:
            name_id[name_id_pair[0]] = {"Count": 1, "Name": name_id_pair[1]}
    counts = np.array([name_id[key]["Count"] for key in name_id])
    sort_id = np.flipud(np.argsort(counts))

    key_vals = list(name_id)
    output_list = []
    for idx in sort_id:
        if name_id[key_vals[idx]]["Count"] >= threshold:
            output_list.append((key_vals[idx], name_id[key_vals[idx]]))
    return OrderedDict(output_list) 
開發者ID:GEMScienceTools,項目名稱:gmpe-smtk,代碼行數:23,代碼來源:strong_motion_selector.py

示例10: save_pfm

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def save_pfm(fname, image, scale=1):
    file = open(fname, 'w') 
    color = None
     
    if image.dtype.name != 'float32':
        raise Exception('Image dtype must be float32.')
     
    if len(image.shape) == 3 and image.shape[2] == 3: # color image
        color = True
    elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
        color = False
    else:
        raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
     
    file.write('PF\n' if color else 'Pf\n')
    file.write('%d %d\n' % (image.shape[1], image.shape[0]))
     
    endian = image.dtype.byteorder
     
    if endian == '<' or endian == '=' and sys.byteorder == 'little':
        scale = -scale
     
    file.write('%f\n' % scale)
     
    np.flipud(image).tofile(file) 
開發者ID:wyf2017,項目名稱:DSMnet,代碼行數:27,代碼來源:img_rw_pfm.py

示例11: augment_img

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def augment_img(img, mode=0):
    '''Kai Zhang (github: https://github.com/cszn)
    '''
    if mode == 0:
        return img
    elif mode == 1:
        return np.flipud(np.rot90(img))
    elif mode == 2:
        return np.flipud(img)
    elif mode == 3:
        return np.rot90(img, k=3)
    elif mode == 4:
        return np.flipud(np.rot90(img, k=2))
    elif mode == 5:
        return np.rot90(img)
    elif mode == 6:
        return np.rot90(img, k=2)
    elif mode == 7:
        return np.flipud(np.rot90(img, k=3)) 
開發者ID:cszn,項目名稱:KAIR,代碼行數:21,代碼來源:utils_image.py

示例12: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def update(self):
        if self.inky_colour is None:
            raise RuntimeError("You must specify which colour of Inky pHAT you're using: inkyphat.set_colour('red', 'black' or 'yellow')")

        self._display_init()

        x1, x2 = self.update_x1, self.update_x2
        y1, y2 = self.update_y1, self.update_y2

        region = self.buffer[y1:y2, x1:x2]

        if self.v_flip:
            region = numpy.fliplr(region)

        if self.h_flip:
            region = numpy.flipud(region)

        buf_red = numpy.packbits(numpy.where(region == RED, 1, 0)).tolist()
        if self.inky_version == 1:
            buf_black = numpy.packbits(numpy.where(region == 0, 0, 1)).tolist()
        else:
            buf_black = numpy.packbits(numpy.where(region == BLACK, 0, 1)).tolist()

        self._display_update(buf_black, buf_red)
        self._display_fini() 
開發者ID:pimoroni,項目名稱:inky-phat,代碼行數:27,代碼來源:inky212x104.py

示例13: matrix_visualization

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def matrix_visualization(matrix,title=None):
    """ Visualize 2D matrices like spectrograms or feature maps.
    """
    plt.figure()
    plt.imshow(np.flipud(matrix.T),interpolation=None)
    plt.colorbar()
    if title!=None:
        plt.title(title)
    plt.show() 
開發者ID:jordipons,項目名稱:sklearn-audio-transfer-learning,代碼行數:11,代碼來源:utils.py

示例14: readPFM

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def readPFM(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header == 'PF':
        color = True
    elif header == 'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline())
    if dim_match:
        width, height = map(int, dim_match.groups())
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().rstrip())
    if scale < 0: # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>' # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data, scale 
開發者ID:JiaRenChang,項目名稱:PSMNet,代碼行數:38,代碼來源:readpfm.py

示例15: readPFM

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import flipud [as 別名]
def readPFM(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    encode_type = chardet.detect(header)  
    header = header.decode(encode_type['encoding'])
    if header == 'PF':
        color = True
    elif header == 'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode(encode_type['encoding']))
    if dim_match:
        width, height = map(int, dim_match.groups())
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().rstrip().decode(encode_type['encoding']))
    if scale < 0: # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>' # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data, scale 
開發者ID:JiaRenChang,項目名稱:PSMNet,代碼行數:40,代碼來源:readpfm.py


注:本文中的numpy.flipud方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。