本文整理匯總了Python中numpy.cumproduct方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.cumproduct方法的具體用法?Python numpy.cumproduct怎麽用?Python numpy.cumproduct使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.cumproduct方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def __init__(self, feat_dims, upsample_scales=[4, 4, 10], compute_dims=128,
res_blocks=10, res_out_dims=128, pad=2):
super().__init__()
self.num_outputs = res_out_dims
total_scale = np.cumproduct(upsample_scales)[-1]
self.indent = pad * total_scale
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
self.resnet_stretch = Stretch2d(total_scale, 1)
self.up_layers = nn.ModuleList()
for scale in upsample_scales:
k_size = (1, scale * 2 + 1)
padding = (0, scale)
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
conv.weight.data.fill_(1. / k_size[1])
self.up_layers.append(stretch)
self.up_layers.append(conv)
示例2: cartesian_product
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def cartesian_product(X):
'''
Numpy version of itertools.product or pandas.compat.product.
Sometimes faster (for large inputs)...
Examples
--------
>>> cartesian_product([list('ABC'), [1, 2]])
[array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'),
array([1, 2, 1, 2, 1, 2])]
'''
lenX = np.fromiter((len(x) for x in X), dtype=int)
cumprodX = np.cumproduct(lenX)
a = np.roll(cumprodX, 1)
a[0] = 1
b = cumprodX[-1] / cumprodX
return [np.tile(np.repeat(x, b[i]),
np.product(a[i]))
for i, x in enumerate(X)]
示例3: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def __init__(self, feat_dims, upsample_scales, compute_dims,
res_blocks, res_out_dims, pad):
super().__init__()
total_scale = np.cumproduct(upsample_scales)[-1]
self.indent = pad * total_scale
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
self.resnet_stretch = Stretch2d(total_scale, 1)
self.up_layers = nn.ModuleList()
for scale in upsample_scales:
k_size = (1, scale * 2 + 1)
padding = (0, scale)
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
conv.weight.data.fill_(1. / k_size[1])
self.up_layers.append(stretch)
self.up_layers.append(conv)
示例4: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def __init__(self, feat_dims, upsample_scales, compute_dims,
res_blocks, res_out_dims, pad) :
super().__init__()
total_scale = np.cumproduct(upsample_scales)[-1]
self.indent = pad * total_scale
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims)
self.resnet_stretch = Stretch2d(total_scale, 1)
self.up_layers = nn.ModuleList()
for scale in upsample_scales :
k_size = (1, scale * 2 + 1)
padding = (0, scale)
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
conv.weight.data.fill_(1. / k_size[1])
self.up_layers.append(stretch)
self.up_layers.append(conv)
示例5: test_cython_group_transform_cumprod
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def test_cython_group_transform_cumprod():
# see gh-4095
dtype = np.float64
pd_op, np_op = groupby.group_cumprod_float64, np.cumproduct
_check_cython_group_transform_cumulative(pd_op, np_op, dtype)
示例6: Tuple_MI
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def Tuple_MI(Tuple, IdxLength):
"""
Function to return the absolution position of a multiindex when the index tuple
and the index hierarchy and size are given.
Example: Tuple_MI([2,7,3],[100,10,5]) = 138
Tuple_MI is the inverse of MI_Tuple.
"""
# First, generate the index position offset values
A = IdxLength[1:] + IdxLength[:1] # Shift 1 to left
A[-1] = 1 # Replace lowest index by 1
A.reverse()
IdxPosOffset = np.cumproduct(A).tolist()
IdxPosOffset.reverse()
Position = np.sum([a*b for a,b in zip(Tuple,IdxPosOffset)])
return Position
示例7: cumproduct
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def cumproduct(x, axis=0):
return np.cumproduct(x, axis)
示例8: test_cumproduct
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def test_cumproduct(self):
with pytest.raises(u.UnitsError):
np.cumproduct(self.q)
示例9: cartesian_product
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def cartesian_product(X):
"""
Numpy version of itertools.product or pandas.compat.product.
Sometimes faster (for large inputs)...
Parameters
----------
X : list-like of list-likes
Returns
-------
product : list of ndarrays
Examples
--------
>>> cartesian_product([list('ABC'), [1, 2]])
[array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'),
array([1, 2, 1, 2, 1, 2])]
See Also
--------
itertools.product : Cartesian product of input iterables. Equivalent to
nested for-loops.
pandas.compat.product : An alias for itertools.product.
"""
msg = "Input must be a list-like of list-likes"
if not is_list_like(X):
raise TypeError(msg)
for x in X:
if not is_list_like(x):
raise TypeError(msg)
if len(X) == 0:
return []
lenX = np.fromiter((len(x) for x in X), dtype=np.intp)
cumprodX = np.cumproduct(lenX)
a = np.roll(cumprodX, 1)
a[0] = 1
if cumprodX[-1] != 0:
b = cumprodX[-1] / cumprodX
else:
# if any factor is empty, the cartesian product is empty
b = np.zeros_like(cumprodX)
return [np.tile(np.repeat(np.asarray(com.values_from_object(x)), b[i]),
np.product(a[i]))
for i, x in enumerate(X)]
示例10: test_cython_group_transform_algos
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def test_cython_group_transform_algos():
# GH 4095
dtypes = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint32,
np.uint64, np.float32, np.float64]
ops = [(groupby.group_cumprod_float64, np.cumproduct, [np.float64]),
(groupby.group_cumsum, np.cumsum, dtypes)]
is_datetimelike = False
for pd_op, np_op, dtypes in ops:
for dtype in dtypes:
data = np.array([[1], [2], [3], [4]], dtype=dtype)
ans = np.zeros_like(data)
labels = np.array([0, 0, 0, 0], dtype=np.int64)
pd_op(ans, data, labels, is_datetimelike)
tm.assert_numpy_array_equal(np_op(data), ans[:, 0],
check_dtype=False)
# with nans
labels = np.array([0, 0, 0, 0, 0], dtype=np.int64)
data = np.array([[1], [2], [3], [np.nan], [4]], dtype='float64')
actual = np.zeros_like(data)
actual.fill(np.nan)
groupby.group_cumprod_float64(actual, data, labels, is_datetimelike)
expected = np.array([1, 2, 6, np.nan, 24], dtype='float64')
tm.assert_numpy_array_equal(actual[:, 0], expected)
actual = np.zeros_like(data)
actual.fill(np.nan)
groupby.group_cumsum(actual, data, labels, is_datetimelike)
expected = np.array([1, 3, 6, np.nan, 10], dtype='float64')
tm.assert_numpy_array_equal(actual[:, 0], expected)
# timedelta
is_datetimelike = True
data = np.array([np.timedelta64(1, 'ns')] * 5, dtype='m8[ns]')[:, None]
actual = np.zeros_like(data, dtype='int64')
groupby.group_cumsum(actual, data.view('int64'), labels,
is_datetimelike)
expected = np.array([np.timedelta64(1, 'ns'), np.timedelta64(
2, 'ns'), np.timedelta64(3, 'ns'), np.timedelta64(4, 'ns'),
np.timedelta64(5, 'ns')])
tm.assert_numpy_array_equal(actual[:, 0].view('m8[ns]'), expected)
示例11: cartesian_product
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def cartesian_product(X):
"""
Numpy version of itertools.product or pandas.compat.product.
Sometimes faster (for large inputs)...
Parameters
----------
X : list-like of list-likes
Returns
-------
product : list of ndarrays
Examples
--------
>>> cartesian_product([list('ABC'), [1, 2]])
[array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'),
array([1, 2, 1, 2, 1, 2])]
See also
--------
itertools.product : Cartesian product of input iterables. Equivalent to
nested for-loops.
pandas.compat.product : An alias for itertools.product.
"""
msg = "Input must be a list-like of list-likes"
if not is_list_like(X):
raise TypeError(msg)
for x in X:
if not is_list_like(x):
raise TypeError(msg)
if len(X) == 0:
return []
lenX = np.fromiter((len(x) for x in X), dtype=np.intp)
cumprodX = np.cumproduct(lenX)
a = np.roll(cumprodX, 1)
a[0] = 1
if cumprodX[-1] != 0:
b = cumprodX[-1] / cumprodX
else:
# if any factor is empty, the cartesian product is empty
b = np.zeros_like(cumprodX)
return [np.tile(np.repeat(np.asarray(com._values_from_object(x)), b[i]),
np.product(a[i]))
for i, x in enumerate(X)]
示例12: test_cython_group_transform_algos
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cumproduct [as 別名]
def test_cython_group_transform_algos(self):
# GH 4095
dtypes = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint32,
np.uint64, np.float32, np.float64]
ops = [(groupby.group_cumprod_float64, np.cumproduct, [np.float64]),
(groupby.group_cumsum, np.cumsum, dtypes)]
is_datetimelike = False
for pd_op, np_op, dtypes in ops:
for dtype in dtypes:
data = np.array([[1], [2], [3], [4]], dtype=dtype)
ans = np.zeros_like(data)
labels = np.array([0, 0, 0, 0], dtype=np.int64)
pd_op(ans, data, labels, is_datetimelike)
tm.assert_numpy_array_equal(np_op(data), ans[:, 0],
check_dtype=False)
# with nans
labels = np.array([0, 0, 0, 0, 0], dtype=np.int64)
data = np.array([[1], [2], [3], [np.nan], [4]], dtype='float64')
actual = np.zeros_like(data)
actual.fill(np.nan)
groupby.group_cumprod_float64(actual, data, labels, is_datetimelike)
expected = np.array([1, 2, 6, np.nan, 24], dtype='float64')
tm.assert_numpy_array_equal(actual[:, 0], expected)
actual = np.zeros_like(data)
actual.fill(np.nan)
groupby.group_cumsum(actual, data, labels, is_datetimelike)
expected = np.array([1, 3, 6, np.nan, 10], dtype='float64')
tm.assert_numpy_array_equal(actual[:, 0], expected)
# timedelta
is_datetimelike = True
data = np.array([np.timedelta64(1, 'ns')] * 5, dtype='m8[ns]')[:, None]
actual = np.zeros_like(data, dtype='int64')
groupby.group_cumsum(actual, data.view('int64'), labels,
is_datetimelike)
expected = np.array([np.timedelta64(1, 'ns'), np.timedelta64(
2, 'ns'), np.timedelta64(3, 'ns'), np.timedelta64(4, 'ns'),
np.timedelta64(5, 'ns')])
tm.assert_numpy_array_equal(actual[:, 0].view('m8[ns]'), expected)