當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.complex_方法代碼示例

本文整理匯總了Python中numpy.complex_方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.complex_方法的具體用法?Python numpy.complex_怎麽用?Python numpy.complex_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.complex_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_against_cmath

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def test_against_cmath(self):
        import cmath

        points = [-1-1j, -1+1j, +1-1j, +1+1j]
        name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
                    'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
        atol = 4*np.finfo(np.complex).eps
        for func in self.funcs:
            fname = func.__name__.split('.')[-1]
            cname = name_map.get(fname, fname)
            try:
                cfunc = getattr(cmath, cname)
            except AttributeError:
                continue
            for p in points:
                a = complex(func(np.complex_(p)))
                b = cfunc(p)
                assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:test_umath.py

示例2: test_against_cmath

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def test_against_cmath(self):
        import cmath, sys

        points = [-1-1j, -1+1j, +1-1j, +1+1j]
        name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
                    'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
        atol = 4*np.finfo(np.complex).eps
        for func in self.funcs:
            fname = func.__name__.split('.')[-1]
            cname = name_map.get(fname, fname)
            try:
                cfunc = getattr(cmath, cname)
            except AttributeError:
                continue
            for p in points:
                a = complex(func(np.complex_(p)))
                b = cfunc(p)
                assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname, p, a, b)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:20,代碼來源:test_umath.py

示例3: test_against_cmath

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def test_against_cmath(self):
        import cmath

        points = [-1-1j, -1+1j, +1-1j, +1+1j]
        name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
                    'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
        atol = 4*np.finfo(complex).eps
        for func in self.funcs:
            fname = func.__name__.split('.')[-1]
            cname = name_map.get(fname, fname)
            try:
                cfunc = getattr(cmath, cname)
            except AttributeError:
                continue
            for p in points:
                a = complex(func(np.complex_(p)))
                b = cfunc(p)
                assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:test_umath.py

示例4: get_matrix_from_channel

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def get_matrix_from_channel(channel, symbol):
        """
        Extract the numeric parameter matrix.

        Args:
            channel (matrix): a 4x4 symbolic matrix.
            symbol (list): a symbol xi

        Returns:
            matrix: a 4x4 numeric matrix.

        Additional Information:
            Each entry of the 4x4 symbolic input channel matrix is assumed to
            be a polynomial of the form a1x1 + ... + anxn + c. The corresponding
            entry in the output numeric matrix is ai.
        """
        from sympy import Poly
        n = channel.rows
        M = numpy.zeros((n, n), dtype=numpy.complex_)
        for (i, j) in itertools.product(range(n), range(n)):
            M[i, j] = numpy.complex(
                Poly(channel[i, j], symbol).coeff_monomial(symbol))
        return M 
開發者ID:Qiskit,項目名稱:qiskit-aer,代碼行數:25,代碼來源:noise_transformation.py

示例5: get_const_matrix_from_channel

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def get_const_matrix_from_channel(channel, symbols):
        """
        Extract the numeric constant matrix.

        Args:
            channel (matrix): a 4x4 symbolic matrix.
            symbols (list): The full list [x1, ..., xn] of symbols
                used in the matrix.

        Returns:
            matrix: a 4x4 numeric matrix.

        Additional Information:
            Each entry of the 4x4 symbolic input channel matrix is assumed to
            be a polynomial of the form a1x1 + ... + anxn + c. The corresponding
            entry in the output numeric matrix is c.
        """
        from sympy import Poly
        n = channel.rows
        M = numpy.zeros((n, n), dtype=numpy.complex_)
        for (i, j) in itertools.product(range(n), range(n)):
            M[i, j] = numpy.complex(
                Poly(channel[i, j], symbols).coeff_monomial(1))
        return M 
開發者ID:Qiskit,項目名稱:qiskit-aer,代碼行數:26,代碼來源:noise_transformation.py

示例6: _default

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def _default(obj):
        """
        Convert dates and numpy objects in a json serializable format.
        """
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16,
                              np.int32, np.int64, np.uint8, np.uint16,
                              np.uint32, np.uint64)):
            return int(obj)
        elif isinstance(obj, np.bool_):
            return bool(obj)
        elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64,
                              np.complex_, np.complex64, np.complex128)):
            return float(obj)

        raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable") 
開發者ID:apache,項目名稱:airflow,代碼行數:21,代碼來源:json.py

示例7: test_numpy_scalar

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def test_numpy_scalar(self):
        dtype = self.dtype
        if dtype is numpy.bool_:
            x = dtype(True)
        elif issubclass(dtype, numpy.complex_):
            x = dtype(3.2 - 2.4j)
        elif issubclass(dtype, numpy.integer):
            x = dtype(3)
        elif issubclass(dtype, numpy.floating):
            x = dtype(3.2)
        else:
            assert False

        y = cuda.to_cpu(x)
        assert isinstance(y, numpy.ndarray)
        assert y.shape == ()
        assert y.dtype == dtype
        assert y == x 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_cuda.py

示例8: convert_esys_to_ndarray

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def convert_esys_to_ndarray(esys_qutip):
    """Takes a qutip eigenstates array, as obtained with .eigenstates(), and converts it into a pure numpy array.

    Parameters
    ----------
    esys_qutip: ndarray of qutip.Qobj
        as obtained from qutip `.eigenstates()`

    Returns
    -------
    ndarray
        converted eigenstate data
    """
    evals_count = len(esys_qutip)
    dimension = esys_qutip[0].shape[0]
    esys_ndarray = np.empty((evals_count, dimension), dtype=np.complex_)
    for index, eigenstate in enumerate(esys_qutip):
        esys_ndarray[index] = eigenstate.full()[:, 0]
    return esys_ndarray 
開發者ID:scqubits,項目名稱:scqubits,代碼行數:21,代碼來源:spectrum_utils.py

示例9: _zeropi_operator_in_product_basis

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def _zeropi_operator_in_product_basis(self, zeropi_operator, zeropi_evecs=None):
        """Helper method that converts a zeropi operator into one in the product basis.

        Returns
        -------
        scipy.sparse.csc_matrix
            operator written in the product basis
        """
        zeropi_dim = self.zeropi_cutoff
        zeta_dim = self.zeta_cutoff

        if zeropi_evecs is None:
            _, zeropi_evecs = self._zeropi.eigensys(evals_count=zeropi_dim)

        op_eigen_basis = sparse.dia_matrix((zeropi_dim, zeropi_dim),
                                           dtype=np.complex_)  # is this guaranteed to be zero?

        op_zeropi = spec_utils.get_matrixelement_table(zeropi_operator, zeropi_evecs)
        for n in range(zeropi_dim):
            for m in range(zeropi_dim):
                op_eigen_basis += op_zeropi[n, m] * op.hubbard_sparse(n, m, zeropi_dim)

        return sparse.kron(op_eigen_basis, sparse.identity(zeta_dim, format='csc', dtype=np.complex_), format='csc') 
開發者ID:scqubits,項目名稱:scqubits,代碼行數:25,代碼來源:zeropi_full.py

示例10: sparse_kinetic_mat

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def sparse_kinetic_mat(self):
        """
        Kinetic energy portion of the Hamiltonian.
        TODO: update this method to use single-variable operator methods

        Returns
        -------
        scipy.sparse.csc_matrix
            matrix representing the kinetic energy operator
        """
        pt_count = self.grid.pt_count
        dim_theta = 2 * self.ncut + 1
        identity_phi = sparse.identity(pt_count, format='csc', dtype=np.complex_)
        identity_theta = sparse.identity(dim_theta, format='csc', dtype=np.complex_)

        kinetic_matrix_phi = self.grid.second_derivative_matrix(prefactor=-2.0 * self.ECJ)

        diag_elements = 2.0 * self.ECS * np.square(np.arange(-self.ncut + self.ng, self.ncut + 1 + self.ng))
        kinetic_matrix_theta = sparse.dia_matrix((diag_elements, [0]), shape=(dim_theta, dim_theta)).tocsc()

        kinetic_matrix = (sparse.kron(kinetic_matrix_phi, identity_theta, format='csc')
                          + sparse.kron(identity_phi, kinetic_matrix_theta, format='csc'))

        kinetic_matrix -= 2.0 * self.ECS * self.dCJ * self.i_d_dphi_operator() * self.n_theta_operator()
        return kinetic_matrix 
開發者ID:scqubits,項目名稱:scqubits,代碼行數:27,代碼來源:zeropi.py

示例11: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def __init__(self, EJ1, EJ2, EJ3, ECJ1, ECJ2, ECJ3, ECg1, ECg2, ng1, ng2, flux, ncut,
                 truncated_dim=None):
        self.EJ1 = EJ1
        self.EJ2 = EJ2
        self.EJ3 = EJ3
        self.ECJ1 = ECJ1
        self.ECJ2 = ECJ2
        self.ECJ3 = ECJ3
        self.ECg1 = ECg1
        self.ECg2 = ECg2
        self.ng1 = ng1
        self.ng2 = ng2
        self.flux = flux
        self.ncut = ncut
        self.truncated_dim = truncated_dim
        self._sys_type = type(self).__name__
        self._evec_dtype = np.complex_
        self._default_grid = discretization.Grid1d(-np.pi / 2, 3 * np.pi / 2, 100)    # for plotting in phi_j basis
        self._image_filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'qubit_pngs/fluxqubit.png') 
開發者ID:scqubits,項目名稱:scqubits,代碼行數:21,代碼來源:flux_qubit.py

示例12: _standard_normal

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def _standard_normal(shape, randstate=np.random, dtype=np.float_):
    """Generates a standard normal numpy array of given shape and dtype, i.e.
    this function is equivalent to `randstate.randn(*shape)` for real dtype and
    `randstate.randn(*shape) + 1.j * randstate.randn(shape)` for complex dtype.

    :param tuple shape: Shape of array to be returned
    :param randstate: An instance of :class:`numpy.random.RandomState` (default is
        ``np.random``))
    :param dtype: ``np.float_`` (default) or `np.complex_`

    Returns
    -------

    A: An array of given shape and dtype with standard normal entries

    """
    if dtype == np.float_:
        return randstate.randn(*shape)
    elif dtype == np.complex_:
        return randstate.randn(*shape) + 1.j * randstate.randn(*shape)
    else:
        raise ValueError('{} is not a valid dtype.'.format(dtype)) 
開發者ID:dsuess,項目名稱:mpnum,代碼行數:24,代碼來源:extmath.py

示例13: _random_vec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def _random_vec(sites, ldim, randstate=None, dtype=np.complex_):
    """Returns a random complex vector (normalized to ||x||_2 = 1) of shape
    (ldim,) * sites, i.e. a pure state with local dimension `ldim` living on
    `sites` sites.

    :param sites: Number of local sites
    :param ldim: Local ldimension
    :param randstate: numpy.random.RandomState instance or None
    :returns: numpy.ndarray of shape (ldim,) * sites

    >>> psi = _random_vec(5, 2); psi.shape
    (2, 2, 2, 2, 2)
    >>> np.abs(np.vdot(psi, psi) - 1) < 1e-6
    True
    """
    shape = (ldim, ) * sites
    psi = _randfuncs[dtype](shape, randstate=randstate)
    psi /= np.linalg.norm(psi)
    return psi 
開發者ID:dsuess,項目名稱:mpnum,代碼行數:21,代碼來源:factory.py

示例14: _random_op

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def _random_op(sites, ldim, hermitian=False, normalized=False, randstate=None,
               dtype=np.complex_):
    """Returns a random operator  of shape (ldim,ldim) * sites with local
    dimension `ldim` living on `sites` sites in global form.

    :param sites: Number of local sites
    :param ldim: Local ldimension
    :param hermitian: Return only the hermitian part (default False)
    :param normalized: Normalize to Frobenius norm=1 (default False)
    :param randstate: numpy.random.RandomState instance or None
    :returns: numpy.ndarray of shape (ldim,ldim) * sites

    >>> A = _random_op(3, 2); A.shape
    (2, 2, 2, 2, 2, 2)
    """
    op = _randfuncs[dtype]((ldim**sites,) * 2, randstate=randstate)
    if hermitian:
        op += np.transpose(op).conj()
    if normalized:
        op /= np.linalg.norm(op)
    return op.reshape((ldim,) * 2 * sites) 
開發者ID:dsuess,項目名稱:mpnum,代碼行數:23,代碼來源:factory.py

示例15: test_operations_typesafety

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex_ [as 別名]
def test_operations_typesafety(nr_sites, local_dim, rank, rgen):
    # create a real MPA
    mpo1 = factory.random_mpa(nr_sites, (local_dim, local_dim), rank,
                              randstate=rgen, dtype=np.float_)
    mpo2 = factory.random_mpa(nr_sites, (local_dim, local_dim), rank,
                              randstate=rgen, dtype=np.complex_)

    assert mpo1.dtype == np.float_
    assert mpo2.dtype == np.complex_

    assert (mpo1 + mpo1).dtype == np.float_
    assert (mpo1 + mpo2).dtype == np.complex_
    assert (mpo2 + mpo1).dtype == np.complex_

    assert mp.sumup((mpo1, mpo1)).dtype == np.float_
    assert mp.sumup((mpo1, mpo2)).dtype == np.complex_
    assert mp.sumup((mpo2, mpo1)).dtype == np.complex_

    assert (mpo1 - mpo1).dtype == np.float_
    assert (mpo1 - mpo2).dtype == np.complex_
    assert (mpo2 - mpo1).dtype == np.complex_

    mpo1 += mpo2
    assert mpo1.dtype == np.complex_ 
開發者ID:dsuess,項目名稱:mpnum,代碼行數:26,代碼來源:mparray_test.py


注:本文中的numpy.complex_方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。