本文整理匯總了Python中numpy.bitwise_not方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.bitwise_not方法的具體用法?Python numpy.bitwise_not怎麽用?Python numpy.bitwise_not使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.bitwise_not方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_values
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def test_values(self):
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1], dtype=dt)
msg = "dt = '%s'" % dt.char
assert_equal(np.bitwise_not(zeros), ones, err_msg=msg)
assert_equal(np.bitwise_not(ones), zeros, err_msg=msg)
assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg)
assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg)
assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg)
assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg)
assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg)
assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg)
assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg)
assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
示例2: testBitwiseOp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def testBitwiseOp(self, onp_op, lnp_op, rng_factory, shapes, dtypes):
rng = rng_factory()
args_maker = self._GetArgsMaker(rng, shapes, dtypes)
has_python_scalar = jtu.PYTHON_SCALAR_SHAPE in shapes
self._CheckAgainstNumpy(onp_op, lnp_op, args_maker, check_dtypes=True)
if onp_op == onp.bitwise_not and has_python_scalar:
# For bitwise_not with a Python `int`, npe.jit may choose a different
# dtype for the `int` from onp's choice, which may result in a different
# result value, so we skip _CompileAndCheck.
return
# Numpy does value-dependent dtype promotion on Python/numpy/array scalars
# which `jit` can't do (when np.result_type is called inside `jit`, tensor
# values are not available), so we skip dtype check in this case.
check_dtypes = not(set(shapes) & set([jtu.NUMPY_SCALAR_SHAPE,
jtu.PYTHON_SCALAR_SHAPE, ()]))
self._CompileAndCheck(lnp_op, args_maker, check_dtypes=check_dtypes)
示例3: simulate_conditional
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def simulate_conditional(self, X):
""" Draws random samples from the conditional distribution
Args:
X: x to be conditioned on when drawing a sample from y ~ p(y|x) - numpy array of shape (n_samples, ndim_x)
Returns:
Conditional random samples y drawn from p(y|x) - numpy array of shape (n_samples, ndim_y)
"""
mean = self.arma_c * (1 - self.arma_a1) + self.arma_a1 * X
y_ar = self.random_state.normal(loc=mean, scale=self.std, size=X.shape[0])
mean_jump = mean + self.jump_mean
y_jump = self.random_state.normal(loc=mean_jump, scale=self.jump_std, size=X.shape[0])
jump_bernoulli = self.random_state.uniform(size=X.shape[0]) < self.jump_prob
return X, np.select([jump_bernoulli, np.bitwise_not(jump_bernoulli)], [y_jump, y_ar])
示例4: _numpy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def _numpy(self, data, weights, shape):
q = self.quantity(data)
self._checkNPQuantity(q, shape)
self._checkNPWeights(weights, shape)
weights = self._makeNPWeights(weights, shape)
# no possibility of exception from here on out (for rollback)
self.entries += float(weights.sum())
import numpy
selection = numpy.isnan(q)
numpy.bitwise_not(selection, selection)
numpy.bitwise_and(selection, weights > 0.0, selection)
q = q[selection]
weights = weights[selection]
q *= weights
self.sum += float(q.sum())
示例5: _numpy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def _numpy(self, data, weights, shape):
q = self.quantity(data)
self._checkNPQuantity(q, shape)
self._checkNPWeights(weights, shape)
weights = self._makeNPWeights(weights, shape)
# no possibility of exception from here on out (for rollback)
import numpy
selection = numpy.isnan(q)
numpy.bitwise_not(selection, selection)
numpy.bitwise_and(selection, weights > 0.0, selection)
q = q[selection]
self.entries += float(weights.sum())
if math.isnan(self.min):
if q.shape[0] > 0:
self.min = float(q.min())
else:
if q.shape[0] > 0:
self.min = min(self.min, float(q.min()))
示例6: transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def transform(iterable: Iterable, inplace: bool = True, columns: List[str] = None, transform_fn: Callable[[Iterable], Iterable] = None):
if inplace is True:
transformed_iterable = iterable
else:
transformed_iterable = iterable.copy()
if isinstance(transformed_iterable, pd.DataFrame):
is_list = False
else:
is_list = True
transformed_iterable = pd.DataFrame(transformed_iterable, columns=columns)
transformed_iterable.fillna(0, inplace=True)
if transform_fn is None:
raise NotImplementedError()
if columns is None:
columns = transformed_iterable.columns
for column in columns:
transformed_iterable[column] = transform_fn(transformed_iterable[column])
transformed_iterable.fillna(method="bfill", inplace=True)
transformed_iterable[np.bitwise_not(np.isfinite(transformed_iterable))] = 0
if is_list:
transformed_iterable = transformed_iterable.values
return transformed_iterable
示例7: _next_observation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def _next_observation(self):
self.current_ohlcv = self.data_provider.next_ohlcv()
self.timestamps.append(pd.to_datetime(self.current_ohlcv.Date.item(), unit='s'))
self.observations = self.observations.append(self.current_ohlcv, ignore_index=True)
if self.stationarize_obs:
observations = log_and_difference(self.observations, inplace=False)
else:
observations = self.observations
if self.normalize_obs:
observations = max_min_normalize(observations)
obs = observations.values[-1]
if self.stationarize_obs:
scaled_history = log_and_difference(self.account_history, inplace=False)
else:
scaled_history = self.account_history
if self.normalize_obs:
scaled_history = max_min_normalize(scaled_history, inplace=False)
obs = np.insert(obs, len(obs), scaled_history.values[-1], axis=0)
obs = np.reshape(obs.astype('float16'), self.obs_shape)
obs[np.bitwise_not(np.isfinite(obs))] = 0
return obs
示例8: test_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def test_types(self):
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1], dtype=dt)
msg = "dt = '%s'" % dt.char
assert_(np.bitwise_not(zeros).dtype == dt, msg)
assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg)
assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg)
assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
示例9: bitwise_not
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def bitwise_not(x):
def f(x):
if x.dtype == tf.bool:
return tf.logical_not(x)
return tf.bitwise.invert(x)
return _scalar(f, x)
示例10: saturation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def saturation(im: np.ndarray) -> np.ndarray:
"""
Saturation as from Binghamton toolbox
:param im: type np.uint8
:return: saturation map from input im
"""
assert (im.dtype == np.uint8)
if im.ndim == 2:
im.shape += (1,)
h, w, ch = im.shape
if im.max() < 250:
return np.ones((h, w, ch))
im_h = im - np.roll(im, (0, 1), (0, 1))
im_v = im - np.roll(im, (1, 0), (0, 1))
satur_map = \
np.bitwise_not(
np.bitwise_and(
np.bitwise_and(
np.bitwise_and(
im_h != 0, im_v != 0
), np.roll(im_h, (0, -1), (0, 1)) != 0
), np.roll(im_v, (-1, 0), (0, 1)) != 0
)
)
max_ch = im.max(axis=0).max(axis=0)
for ch_idx, max_c in enumerate(max_ch):
if max_c > 250:
satur_map[:, :, ch_idx] = \
np.bitwise_not(
np.bitwise_and(
im[:, :, ch_idx] == max_c, satur_map[:, :, ch_idx]
)
)
return satur_map
示例11: local_maxima
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def local_maxima(arr):
# http://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/3689710#3689710
"""
Takes an array and detects the troughs using the local maximum filter.
Returns a boolean mask of the troughs (i.e. 1 when
the pixel's value is the neighborhood maximum, 0 otherwise)
"""
# define an connected neighborhood
# http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#generate_binary_structure
neighborhood = morphology.generate_binary_structure(len(arr.shape),2)
# apply the local maximum filter; all locations of maximal value
# in their neighborhood are set to 1
# http://www.scipy.org/doc/api_docs/SciPy.ndimage.filters.html#maximum_filter
local_max = (filters.maximum_filter(arr, footprint=neighborhood)==arr)
# local_max is a mask that contains the peaks we are
# looking for, but also the background.
# In order to isolate the peaks we must remove the background from the mask.
#
# we create the mask of the background
background = (arr==arr.min()) # mxu: in the original version, was background = (arr==0)
#
# a little technicality: we must erode the background in order to
# successfully subtract it from local_max, otherwise a line will
# appear along the background border (artifact of the local maximum filter)
# http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#binary_erosion
eroded_background = morphology.binary_erosion(
background, structure=neighborhood, border_value=1)
#
# we obtain the final mask, containing only peaks,
# by removing the background from the local_max mask
#detected_maxima = local_max - eroded_backround # mxu: this is the old version, but the boolean minus operator is deprecated
detected_maxima = np.bitwise_and(local_max, np.bitwise_not(eroded_background)) # Material nonimplication, see http://en.wikipedia.org/wiki/Material_nonimplication
return np.where(detected_maxima)
示例12: mask_table
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def mask_table(region, table, negate=False, racol='ra', deccol='dec'):
"""
Apply a given mask (region) to the table, removing all the rows with ra/dec inside the region
If negate=False then remove the rows with ra/dec outside the region.
Parameters
----------
region : :class:`AegeanTools.regions.Region`
Region to mask.
table : Astropy.table.Table
Table to be masked.
negate : bool
If True then pixels *outside* the region are masked.
Default = False.
racol, deccol : str
The name of the columns in `table` that should be interpreted as ra and dec.
Default = 'ra', 'dec'
Returns
-------
masked : Astropy.table.Table
A view of the given table which has been masked.
"""
inside = region.sky_within(table[racol], table[deccol], degin=True)
if not negate:
mask = np.bitwise_not(inside)
else:
mask = inside
return table[mask]
示例13: sky_within
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def sky_within(self, ra, dec, degin=False):
"""
Test whether a sky position is within this region
Parameters
----------
ra, dec : float
Sky position.
degin : bool
If True the ra/dec is interpreted as degrees, otherwise as radians.
Default = False.
Returns
-------
within : bool
True if the given position is within one of the region's pixels.
"""
sky = self.radec2sky(ra, dec)
if degin:
sky = np.radians(sky)
theta_phi = self.sky2ang(sky)
# Set values that are nan to be zero and record a mask
mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1))
theta_phi[mask, :] = 0
theta, phi = theta_phi.transpose()
pix = hp.ang2pix(2**self.maxdepth, theta, phi, nest=True)
pixelset = self.get_demoted()
result = np.in1d(pix, list(pixelset))
# apply the mask and set the shonky values to False
result[mask] = False
return result
示例14: test_success
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bitwise_not [as 別名]
def test_success():
mask_collection_0 = binary_mask_collection_2d()
binary_arrays, physical_ticks = binary_arrays_2d()
binary_arrays_negated = [
np.bitwise_not(binary_array)
for binary_array in binary_arrays
]
mask_collection_1 = BinaryMaskCollection.from_binary_arrays_and_ticks(
binary_arrays_negated, None, physical_ticks, None)
merged = SimpleMerge().run([mask_collection_0, mask_collection_1])
assert _ticks_equal(merged._pixel_ticks, mask_collection_0._pixel_ticks)
assert _ticks_equal(merged._physical_ticks, mask_collection_0._physical_ticks)
assert len(mask_collection_0) + len(mask_collection_1) == len(merged)
# go through all the original uncroppped masks, and verify that they are somewhere in the merged
# set.
for mask_collection in (mask_collection_0, mask_collection_1):
for ix in range(len(mask_collection)):
uncropped_original_mask = mask_collection.uncropped_mask(ix)
for jx in range(len(merged)):
uncropped_copy_mask = merged.uncropped_mask(jx)
if uncropped_original_mask.equals(uncropped_copy_mask):
# found the copy, break
break
else:
pytest.fail("could not find mask in merged set.")