本文整理匯總了Python中numpy.array_repr方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.array_repr方法的具體用法?Python numpy.array_repr怎麽用?Python numpy.array_repr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.array_repr方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testBiEncoderForwardPassWithDropout
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testBiEncoderForwardPassWithDropout(self):
with self.session(use_gpu=False):
tf.random.set_seed(8372749040)
p = self._BiEncoderParams()
p.dropout_prob = 0.5
mt_enc = encoder.MTEncoderBiRNN(p)
batch = py_utils.NestedMap()
batch.ids = tf.transpose(tf.reshape(tf.range(0, 8, 1), [4, 2]))
batch.paddings = tf.zeros([2, 4])
enc_out = mt_enc.FPropDefaultTheta(batch).encoded
self.evaluate(tf.global_variables_initializer())
actual_enc_out = enc_out.eval()
print('bi_enc_actual_enc_out_with_dropout', np.array_repr(actual_enc_out))
expected_enc_out = [[[-1.8358192e-05, 1.2103478e-05],
[2.9347059e-06, -3.0652325e-06]],
[[-8.1282624e-06, 4.5443494e-06],
[3.0826509e-06, -5.2950490e-06]],
[[-4.6669629e-07, 2.4246765e-05],
[-1.5221613e-06, -1.9654153e-06]],
[[-1.1511075e-05, 1.9061190e-05],
[-5.7250163e-06, 9.2785704e-06]]]
self.assertAllClose(expected_enc_out, actual_enc_out)
示例2: testFProp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testFProp(self, dtype=tf.float32, fprop_dtype=tf.float32):
with self.session():
tf.random.set_seed(_TF_RANDOM_SEED)
p = self._testParams()
p.dtype = dtype
if fprop_dtype:
p.fprop_dtype = fprop_dtype
p.input.dtype = fprop_dtype
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
loss = mdl.loss
logp = mdl.eval_metrics['log_pplx'][0]
self.evaluate(tf.global_variables_initializer())
vals = []
for _ in range(5):
vals += [self.evaluate((loss, logp))]
print('actual vals = %s' % np.array_repr(np.array(vals)))
self.assertAllClose(vals, [[233.57518, 10.381119], [236.10052, 10.378047],
[217.99896, 10.380901], [217.94647, 10.378406],
[159.5997, 10.380468]])
示例3: testFProp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testFProp(self, dtype=tf.float32):
with self.session():
tf.random.set_seed(_TF_RANDOM_SEED)
p = self._testParams()
p.dtype = dtype
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
loss = mdl.loss
logp = mdl.eval_metrics['log_pplx'][0]
self.evaluate(tf.global_variables_initializer())
vals = []
for _ in range(3):
vals += [self.evaluate((loss, logp))]
print('actual vals = %s' % np.array_repr(np.array(vals)))
expected_vals = [
[326.765106, 10.373495],
[306.018066, 10.373494],
[280.08429, 10.373492],
]
self.assertAllClose(vals, expected_vals)
示例4: testBeamSearchHelperWithSeqLengths
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testBeamSearchHelperWithSeqLengths(self):
with self.session(use_gpu=False) as sess:
topk_ids, topk_lens, topk_scores = GetBeamSearchHelperResults(
sess, num_hyps_per_beam=3, pass_seq_lengths=True)
print(np.array_repr(topk_ids))
print(np.array_repr(topk_lens))
print(np.array_repr(topk_scores))
expected_topk_ids = [[4, 3, 4, 3, 2, 0, 0], [4, 3, 11, 2, 0, 0, 0],
[4, 3, 6, 2, 0, 0, 0], [6, 0, 4, 6, 6, 11, 2],
[6, 0, 4, 6, 1, 2, 0], [6, 0, 4, 6, 6, 2, 0]]
expected_topk_lens = [5, 4, 4, 7, 6, 6]
expected_topk_scores = [[8.27340603, 6.26949024, 5.59490776],
[9.74691486, 8.46679497, 7.14809656]]
self.assertEqual(expected_topk_ids, topk_ids.tolist())
self.assertEqual(expected_topk_lens, topk_lens.tolist())
self.assertAllClose(expected_topk_scores, topk_scores)
示例5: testTransformerAttentionLayerFPropMaskedSelfAttention
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testTransformerAttentionLayerFPropMaskedSelfAttention(self):
with self.session(use_gpu=True) as sess:
query_vec, paddings, _, _ = self._TransformerAttentionLayerInputs()
p = attention.TransformerAttentionLayer.Params().Set(
name='transformer_masked_self_atten',
input_dim=4,
is_masked=True,
num_heads=2)
p.params_init = py_utils.WeightInit.Xavier(scale=1.0, seed=0)
l = p.Instantiate()
ctx_vec, _ = l.FProp(l.theta, query_vec, None, paddings)
tf.global_variables_initializer().run()
actual_ctx = sess.run(ctx_vec)
actual_ctx = np.reshape(actual_ctx, (10, 4))
tf.logging.info(np.array_repr(actual_ctx))
expected_ctx = [7.777687, 5.219166, 6.305151, 4.817311]
self.assertAllClose(expected_ctx, np.sum(actual_ctx, axis=0))
示例6: testTransformerAttentionLayerFPropCrossAttention
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testTransformerAttentionLayerFPropCrossAttention(self):
with self.session(use_gpu=True) as sess:
(query_vec, _, aux_vec,
aux_paddings) = self._TransformerAttentionLayerInputs()
p = attention.TransformerAttentionLayer.Params().Set(
name='transformer_cross_atten',
input_dim=4,
is_masked=False,
num_heads=2)
p.params_init = py_utils.WeightInit.Xavier(scale=1.0, seed=0)
l = p.Instantiate()
ctx_vec, _ = l.FProp(l.theta, query_vec, aux_vec, aux_paddings)
tf.global_variables_initializer().run()
actual_ctx = sess.run(ctx_vec)
actual_ctx = np.reshape(actual_ctx, (10, 4))
tf.logging.info(np.array_repr(actual_ctx))
expected_ctx = [19.345360, 15.057412, 13.744134, 13.387347]
self.assertAllClose(expected_ctx, np.sum(actual_ctx, axis=0))
示例7: testTransformerLayerFPropWithCrossAttention
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testTransformerLayerFPropWithCrossAttention(self, multiplier):
with self.session(use_gpu=True) as sess:
(query_vec, _, aux_vec,
aux_paddings) = self._TransformerAttentionLayerInputs()
query_vec = tf.tile(query_vec, [multiplier, 1, 1])
paddings = tf.zeros([2 * multiplier, 5])
p = attention.TransformerLayer.Params()
p.name = 'transformer_layer'
p.input_dim = 4
p.tr_fflayer_tpl.hidden_dim = 7
p.tr_atten_tpl.num_heads = 2
p.params_init = py_utils.WeightInit.Xavier(scale=1.0, seed=0)
l = p.Instantiate()
ctx_vec, _ = l.FProp(l.theta, query_vec, paddings, aux_vec, aux_paddings)
tf.global_variables_initializer().run()
actual_ctx = sess.run(ctx_vec)
actual_ctx = np.reshape(actual_ctx, (10 * multiplier, 4))
tf.logging.info(np.array_repr(actual_ctx))
expected_ctx = [
4.7839108, 4.5303655, 5.5551023, 5.065767, 5.0493064, 3.2142467,
2.8200178, 5.659971, 4.3814187, 2.60475
] * multiplier
self.assertAllClose(expected_ctx, np.sum(actual_ctx, axis=1))
示例8: testTransformerDecoderLayerFProp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testTransformerDecoderLayerFProp(self):
with self.session(use_gpu=True) as sess:
(query_vec, paddings, aux_vec,
aux_paddings) = self._TransformerAttentionLayerInputs()
l = self._ConstructTransformerDecoderLayer()
layer_output, _ = l.FProp(l.theta, query_vec, paddings, aux_vec,
aux_paddings)
tf.global_variables_initializer().run()
actual_layer_output = sess.run(layer_output)
actual_layer_output = np.reshape(actual_layer_output, (10, 4))
tf.logging.info(np.array_repr(actual_layer_output))
expected_layer_output = [16.939590, 24.121685, 19.975197, 15.924350]
self.assertAllClose(expected_layer_output,
np.sum(actual_layer_output, axis=0))
示例9: testTransformerDecoderLayerStackFProp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testTransformerDecoderLayerStackFProp(self):
with self.session(use_gpu=True) as sess:
(query_vec, paddings, aux_vec,
aux_paddings) = self._TransformerAttentionLayerInputs()
l = self._ConstructTransformerDecoderLayerStack()
layer_output, _ = l.FProp(
l.theta,
query_vec=query_vec,
paddings=paddings,
aux_vec=aux_vec,
aux_paddings=aux_paddings)
tf.global_variables_initializer().run()
actual_layer_output = sess.run(layer_output)
actual_layer_output = np.reshape(actual_layer_output, (10, 4))
tf.logging.info(np.array_repr(actual_layer_output))
expected_layer_output = [9.926413, -4.491376, 27.051598, 2.112684]
self.assertAllClose(expected_layer_output,
np.sum(actual_layer_output, axis=0))
示例10: testPerStepSourcePaddingMultiHeadedAttention
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testPerStepSourcePaddingMultiHeadedAttention(self):
params = attention.MultiHeadedAttention.Params()
params.name = 'atten'
params.params_init = py_utils.WeightInit.Gaussian(0.1, 877374)
depth = 6
params.source_dim = depth
params.query_dim = depth
params.hidden_dim = depth
params.vn.global_vn = False
params.vn.per_step_vn = False
atten = params.Instantiate()
prob_out, vec_out = self._testPerStepSourcePaddingHelper(atten, depth)
print('vec_out', np.array_repr(np.sum(vec_out, 1)))
self.assertAllClose([-0.006338, -0.025153, 0.041647, -0.025153],
np.sum(vec_out, 1))
self.assertAllClose([1.0, 1.0, 1.0, 1.0], np.sum(prob_out, 1))
示例11: testPerStepSourcePaddingLocationSensitiveAttention
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testPerStepSourcePaddingLocationSensitiveAttention(self):
params = attention.LocationSensitiveAttention.Params()
params.name = 'atten'
params.params_init = py_utils.WeightInit.Gaussian(0.1, 877374)
depth = 6
params.source_dim = depth
params.query_dim = depth
params.hidden_dim = depth
params.location_filter_size = 3
params.location_num_filters = 4
params.vn.global_vn = False
params.vn.per_step_vn = False
atten_state = tf.concat(
[tf.ones([4, 1], tf.float32),
tf.zeros([4, 5], tf.float32)], 1)
atten_state = tf.expand_dims(atten_state, 1)
atten = params.Instantiate()
prob_out, vec_out = self._testPerStepSourcePaddingHelper(
atten, depth, atten_state=atten_state)
print('vec_out', np.array_repr(np.sum(vec_out, 1)))
self.assertAllClose([2.001103, 3.293414, 2.306448, 3.293414],
np.sum(vec_out, 1))
self.assertAllClose([1.0, 1.0, 1.0, 1.0], np.sum(prob_out, 1))
示例12: testPerStepSourcePaddingMonotonicAttention
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testPerStepSourcePaddingMonotonicAttention(self):
params = attention.MonotonicAttention.Params()
params.name = 'atten'
params.params_init = py_utils.WeightInit.Gaussian(0.1, 877374)
depth = 6
params.source_dim = depth
params.query_dim = depth
params.hidden_dim = depth
params.vn.global_vn = False
params.vn.per_step_vn = False
atten = params.Instantiate()
atten_state = atten.ZeroAttentionState(6, 4)
atten_state.emit_probs = tf.concat(
[tf.ones([4, 1], tf.float32),
tf.zeros([4, 5], tf.float32)], 1)
prob_out, vec_out = self._testPerStepSourcePaddingHelper(
atten, depth, atten_state=atten_state)
print('prob_out', np.array_repr(np.sum(prob_out, 1)))
print('vec_out', np.array_repr(np.sum(vec_out, 1)))
示例13: testLSTMSimpleWithForgetGateInitBias
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testLSTMSimpleWithForgetGateInitBias(self, couple_input_forget_gates,
b_expected):
params = rnn_cell.LSTMCellSimple.Params().Set(
name='lstm',
params_init=py_utils.WeightInit.Constant(0.1),
couple_input_forget_gates=couple_input_forget_gates,
num_input_nodes=2,
num_output_nodes=3,
forget_gate_bias=2.0,
bias_init=py_utils.WeightInit.Constant(0.1),
dtype=tf.float64)
lstm = rnn_cell.LSTMCellSimple(params)
np.random.seed(_NUMPY_RANDOM_SEED)
with self.session(use_gpu=False):
self.evaluate(tf.global_variables_initializer())
b_value = lstm._GetBias(lstm.theta).eval()
tf.logging.info('testLSTMSimpleWithForgetGateInitBias b = %s',
np.array_repr(b_value))
self.assertAllClose(b_value, b_expected)
# pyformat: disable
示例14: _testLNLSTMCellFPropBProp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def _testLNLSTMCellFPropBProp(self, params, num_hidden_nodes=None):
tf.reset_default_graph()
lstm, _, state1 = self._testLNLSTMCellHelper(params, num_hidden_nodes)
loss = -tf.math.log(
tf.sigmoid(
tf.reduce_sum(tf.square(state1.m)) +
tf.reduce_sum(state1.m * state1.c * state1.c)))
grads = tf.gradients(loss, lstm.vars.Flatten())
with self.session(use_gpu=False):
self.evaluate(tf.global_variables_initializer())
m_v, c_v, grads_v = self.evaluate([state1.m, state1.c, grads])
tf.logging.info('m_v = %s', np.array_repr(m_v))
tf.logging.info('c_v = %s', np.array_repr(c_v))
grads_val = py_utils.NestedMap()
for (n, _), val in zip(lstm.vars.FlattenItems(), grads_v):
tf.logging.info('%s : %s', n, np.array_repr(val))
grads_val[n] = val
return m_v, c_v, grads_val
# pyformat: disable
示例15: testConv2DLayerFProp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_repr [as 別名]
def testConv2DLayerFProp(self):
# pyformat: disable
# pylint: disable=bad-whitespace
expected_output1 = [
[[[ 0.36669245, 0.91488785],
[ 0.07532132, 0. ]],
[[ 0.34952009, 0. ],
[ 1.91783941, 0. ]]],
[[[ 0.28304493, 0. ],
[ 0. , 0. ]],
[[ 0. , 0.86575812],
[ 0. , 1.60203481]]]]
# pyformat: enable
# pylint: enable=bad-whitespace
actual = self._evalConvLayerFProp()
print('actual = ', np.array_repr(actual))
self.assertAllClose(expected_output1, actual)