本文整理匯總了Python中numpy.AxisError方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.AxisError方法的具體用法?Python numpy.AxisError怎麽用?Python numpy.AxisError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.AxisError方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_prepend
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_prepend(self):
x = np.arange(5) + 1
assert_array_equal(diff(x, prepend=0), np.ones(5))
assert_array_equal(diff(x, prepend=[0]), np.ones(5))
assert_array_equal(np.cumsum(np.diff(x, prepend=0)), x)
assert_array_equal(diff(x, prepend=[-1, 0]), np.ones(6))
x = np.arange(4).reshape(2, 2)
result = np.diff(x, axis=1, prepend=0)
expected = [[0, 1], [2, 1]]
assert_array_equal(result, expected)
result = np.diff(x, axis=1, prepend=[[0], [0]])
assert_array_equal(result, expected)
result = np.diff(x, axis=0, prepend=0)
expected = [[0, 1], [2, 2]]
assert_array_equal(result, expected)
result = np.diff(x, axis=0, prepend=[[0, 0]])
assert_array_equal(result, expected)
assert_raises(ValueError, np.diff, x, prepend=np.zeros((3,3)))
assert_raises(np.AxisError, diff, x, prepend=0, axis=3)
示例2: test_invalid
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_invalid(self):
""" Test it errors when indices has too few dimensions """
a = np.ones((10, 10))
ai = np.ones((10, 2), dtype=np.intp)
# sanity check
take_along_axis(a, ai, axis=1)
# not enough indices
assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1)
# bool arrays not allowed
assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1)
# float arrays not allowed
assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1)
# invalid axis
assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
示例3: test_count_func
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_count_func(self):
# Tests count
assert_equal(1, count(1))
assert_equal(0, array(1, mask=[1]))
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
res = count(ott)
assert_(res.dtype.type is np.intp)
assert_equal(3, res)
ott = ott.reshape((2, 2))
res = count(ott)
assert_(res.dtype.type is np.intp)
assert_equal(3, res)
res = count(ott, 0)
assert_(isinstance(res, ndarray))
assert_equal([1, 2], res)
assert_(getmask(res) is nomask)
ott = array([0., 1., 2., 3.])
res = count(ott, 0)
assert_(isinstance(res, ndarray))
assert_(res.dtype.type is np.intp)
assert_raises(np.AxisError, ott.count, axis=1)
示例4: test_axis_argument_errors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_axis_argument_errors(self):
msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s"
for ndmin in range(5):
for mask in [False, True]:
x = array(1, ndmin=ndmin, mask=mask)
# Valid axis values should not raise exception
args = itertools.product(range(-ndmin, ndmin), [False, True])
for axis, over in args:
try:
np.ma.median(x, axis=axis, overwrite_input=over)
except Exception:
raise AssertionError(msg % (mask, ndmin, axis, over))
# Invalid axis values should raise exception
args = itertools.product([-(ndmin + 1), ndmin], [False, True])
for axis, over in args:
try:
np.ma.median(x, axis=axis, overwrite_input=over)
except np.AxisError:
pass
else:
raise AssertionError(msg % (mask, ndmin, axis, over))
示例5: test_bad_args
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_bad_args(self):
# Check that bad arguments raise the appropriate exceptions.
A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
# Using `axis=<integer>` or passing in a 1-D array implies vector
# norms are being computed, so also using `ord='fro'`
# or `ord='nuc'` raises a ValueError.
assert_raises(ValueError, norm, A, 'fro', 0)
assert_raises(ValueError, norm, A, 'nuc', 0)
assert_raises(ValueError, norm, [3, 4], 'fro', None)
assert_raises(ValueError, norm, [3, 4], 'nuc', None)
# Similarly, norm should raise an exception when ord is any finite
# number other than 1, 2, -1 or -2 when computing matrix norms.
for order in [0, 3]:
assert_raises(ValueError, norm, A, order, None)
assert_raises(ValueError, norm, A, order, (0, 1))
assert_raises(ValueError, norm, B, order, (1, 2))
# Invalid axis
assert_raises(np.AxisError, norm, B, None, 3)
assert_raises(np.AxisError, norm, B, None, (2, 3))
assert_raises(ValueError, norm, B, None, (0, 1, 2))
示例6: test_errors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_errors(self):
x = np.random.randn(1, 2, 3)
assert_raises_regex(np.AxisError, 'source.*out of bounds',
np.moveaxis, x, 3, 0)
assert_raises_regex(np.AxisError, 'source.*out of bounds',
np.moveaxis, x, -4, 0)
assert_raises_regex(np.AxisError, 'destination.*out of bounds',
np.moveaxis, x, 0, 5)
assert_raises_regex(ValueError, 'repeated axis in `source`',
np.moveaxis, x, [0, 0], [0, 1])
assert_raises_regex(ValueError, 'repeated axis in `destination`',
np.moveaxis, x, [0, 1], [1, 1])
assert_raises_regex(ValueError, 'must have the same number',
np.moveaxis, x, 0, [0, 1])
assert_raises_regex(ValueError, 'must have the same number',
np.moveaxis, x, [0, 1], [0])
示例7: test_broadcasting_shapes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_broadcasting_shapes(self):
u = np.ones((2, 1, 3))
v = np.ones((5, 3))
assert_equal(np.cross(u, v).shape, (2, 5, 3))
u = np.ones((10, 3, 5))
v = np.ones((2, 5))
assert_equal(np.cross(u, v, axisa=1, axisb=0).shape, (10, 5, 3))
assert_raises(np.AxisError, np.cross, u, v, axisa=1, axisb=2)
assert_raises(np.AxisError, np.cross, u, v, axisa=3, axisb=0)
u = np.ones((10, 3, 5, 7))
v = np.ones((5, 7, 2))
assert_equal(np.cross(u, v, axisa=1, axisc=2).shape, (10, 5, 3, 7))
assert_raises(np.AxisError, np.cross, u, v, axisa=-5, axisb=2)
assert_raises(np.AxisError, np.cross, u, v, axisa=1, axisb=-4)
# gh-5885
u = np.ones((3, 4, 2))
for axisc in range(-2, 2):
assert_equal(np.cross(u, u, axisc=axisc).shape, (3, 4))
示例8: test_specific_axes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_specific_axes(self):
# Testing that gradient can work on a given axis only
v = [[1, 1], [3, 4]]
x = np.array(v)
dx = [np.array([[2., 3.], [2., 3.]]),
np.array([[0., 0.], [1., 1.]])]
assert_array_equal(gradient(x, axis=0), dx[0])
assert_array_equal(gradient(x, axis=1), dx[1])
assert_array_equal(gradient(x, axis=-1), dx[1])
assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]])
# test axis=None which means all axes
assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]])
# and is the same as no axis keyword given
assert_almost_equal(gradient(x, axis=None), gradient(x))
# test vararg order
assert_array_equal(gradient(x, 2, 3, axis=(1, 0)),
[dx[1]/2.0, dx[0]/3.0])
# test maximal number of varargs
assert_raises(TypeError, gradient, x, 1, 2, axis=1)
assert_raises(np.AxisError, gradient, x, axis=3)
assert_raises(np.AxisError, gradient, x, axis=-3)
# assert_raises(TypeError, gradient, x, axis=[1,])
示例9: test_bad_args
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_bad_args(self):
# Check that bad arguments raise the appropriate exceptions.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
# Using `axis=<integer>` or passing in a 1-D array implies vector
# norms are being computed, so also using `ord='fro'`
# or `ord='nuc'` raises a ValueError.
assert_raises(ValueError, norm, A, 'fro', 0)
assert_raises(ValueError, norm, A, 'nuc', 0)
assert_raises(ValueError, norm, [3, 4], 'fro', None)
assert_raises(ValueError, norm, [3, 4], 'nuc', None)
# Similarly, norm should raise an exception when ord is any finite
# number other than 1, 2, -1 or -2 when computing matrix norms.
for order in [0, 3]:
assert_raises(ValueError, norm, A, order, None)
assert_raises(ValueError, norm, A, order, (0, 1))
assert_raises(ValueError, norm, B, order, (1, 2))
# Invalid axis
assert_raises(np.AxisError, norm, B, None, 3)
assert_raises(np.AxisError, norm, B, None, (2, 3))
assert_raises(ValueError, norm, B, None, (0, 1, 2))
示例10: test_axes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_axes(self):
assert_raises(np.AxisError, np.flip, np.ones(4), axis=1)
assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=2)
assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=-3)
assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=(0, 3))
示例11: test_multidim
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_multidim(self):
a = [[1, 1, 1]]
r = [[2, 2, 2],
[1, 1, 1]]
assert_equal(insert(a, 0, [1]), [1, 1, 1, 1])
assert_equal(insert(a, 0, [2, 2, 2], axis=0), r)
assert_equal(insert(a, 0, 2, axis=0), r)
assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]])
a = np.array([[1, 1], [2, 2], [3, 3]])
b = np.arange(1, 4).repeat(3).reshape(3, 3)
c = np.concatenate(
(a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T,
a[:, 1:2]), axis=1)
assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b)
assert_equal(insert(a, [1], [1, 2, 3], axis=1), c)
# scalars behave differently, in this case exactly opposite:
assert_equal(insert(a, 1, [1, 2, 3], axis=1), b)
assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c)
a = np.arange(4).reshape(2, 2)
assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a)
assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a)
# negative axis value
a = np.arange(24).reshape((2, 3, 4))
assert_equal(insert(a, 1, a[:,:, 3], axis=-1),
insert(a, 1, a[:,:, 3], axis=2))
assert_equal(insert(a, 1, a[:, 2,:], axis=-2),
insert(a, 1, a[:, 2,:], axis=1))
# invalid axis value
assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=3)
assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=-4)
# negative axis value
a = np.arange(24).reshape((2, 3, 4))
assert_equal(insert(a, 1, a[:, :, 3], axis=-1),
insert(a, 1, a[:, :, 3], axis=2))
assert_equal(insert(a, 1, a[:, 2, :], axis=-2),
insert(a, 1, a[:, 2, :], axis=1))
示例12: test_axis
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_axis(self):
x = np.zeros((10, 20, 30))
x[:, 1::2, :] = 1
exp = np.ones((10, 19, 30))
exp[:, 1::2, :] = -1
assert_array_equal(diff(x), np.zeros((10, 20, 29)))
assert_array_equal(diff(x, axis=-1), np.zeros((10, 20, 29)))
assert_array_equal(diff(x, axis=0), np.zeros((9, 20, 30)))
assert_array_equal(diff(x, axis=1), exp)
assert_array_equal(diff(x, axis=-2), exp)
assert_raises(np.AxisError, diff, x, axis=3)
assert_raises(np.AxisError, diff, x, axis=-4)
示例13: test_append
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_append(self):
x = np.arange(5)
result = diff(x, append=0)
expected = [1, 1, 1, 1, -4]
assert_array_equal(result, expected)
result = diff(x, append=[0])
assert_array_equal(result, expected)
result = diff(x, append=[0, 2])
expected = expected + [2]
assert_array_equal(result, expected)
x = np.arange(4).reshape(2, 2)
result = np.diff(x, axis=1, append=0)
expected = [[1, -1], [1, -3]]
assert_array_equal(result, expected)
result = np.diff(x, axis=1, append=[[0], [0]])
assert_array_equal(result, expected)
result = np.diff(x, axis=0, append=0)
expected = [[2, 2], [-2, -3]]
assert_array_equal(result, expected)
result = np.diff(x, axis=0, append=[[0, 0]])
assert_array_equal(result, expected)
assert_raises(ValueError, np.diff, x, append=np.zeros((3,3)))
assert_raises(np.AxisError, diff, x, append=0, axis=3)
示例14: test_extended_axis_invalid
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import AxisError [as 別名]
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
assert_raises(np.AxisError, np.percentile, d, axis=-5, q=25)
assert_raises(np.AxisError, np.percentile, d, axis=(0, -5), q=25)
assert_raises(np.AxisError, np.percentile, d, axis=4, q=25)
assert_raises(np.AxisError, np.percentile, d, axis=(0, 4), q=25)
# each of these refers to the same axis twice
assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25)
assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25)
assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25)