本文整理匯總了Python中numba.guvectorize方法的典型用法代碼示例。如果您正苦於以下問題:Python numba.guvectorize方法的具體用法?Python numba.guvectorize怎麽用?Python numba.guvectorize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numba
的用法示例。
在下文中一共展示了numba.guvectorize方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calculate_value_functions_and_flow_utilities
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import guvectorize [as 別名]
def calculate_value_functions_and_flow_utilities(
wage, nonpec, continuation_value, draw, delta, value_function, flow_utility
):
"""Calculate the choice-specific value functions and flow utilities.
To apply :func:`aggregate_keane_wolpin_utility` to arrays with arbitrary dimensions,
this function uses :func:`numba.guvectorize`. One cannot use :func:`numba.vectorize`
because it does not support multiple return values.
See also
--------
aggregate_keane_wolpin_utility
"""
value_function[0], flow_utility[0] = aggregate_keane_wolpin_utility(
wage, nonpec, continuation_value, draw, delta
)
示例2: tensor_outer_at
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import guvectorize [as 別名]
def tensor_outer_at(vtarget, **kwargs):
@guvectorize(['void(float64[:], float64[:, :], float64[:, :], intp[:], intp[:], float64[:, :])'],
'(),(i,m),(j,n),(),()->(m,n)',
target=vtarget, nopython=True, **kwargs)
def tensor_outer_wrapped(val, v, w, i, j, res):
r1 = v.shape[1]
r2 = w.shape[1]
for m in range(r1):
for n in range(r2):
res[m, n] = val[0] * v[i[0], m] * w[j[0], n]
return tensor_outer_wrapped
示例3: _crps_ensemble_gufunc
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import guvectorize [as 別名]
def _crps_ensemble_gufunc(observation, forecasts, weights, result):
# beware: forecasts are assumed sorted in NumPy's sort order
# we index the 0th element to get the scalar value from this 0d array:
# http://numba.pydata.org/numba-doc/0.18.2/user/vectorize.html#the-guvectorize-decorator
obs = observation[0]
if np.isnan(obs):
result[0] = np.nan
return
total_weight = 0.0
for n, weight in enumerate(weights):
if np.isnan(forecasts[n]):
# NumPy sorts NaN to the end
break
if not weight >= 0:
# this catches NaN weights
result[0] = np.nan
return
total_weight += weight
obs_cdf = 0
forecast_cdf = 0
prev_forecast = 0
integral = 0
for n, forecast in enumerate(forecasts):
if np.isnan(forecast):
# NumPy sorts NaN to the end
if n == 0:
integral = np.nan
# reset for the sake of the conditional below
forecast = prev_forecast
break
if obs_cdf == 0 and obs < forecast:
integral += (obs - prev_forecast) * forecast_cdf ** 2
integral += (forecast - obs) * (forecast_cdf - 1) ** 2
obs_cdf = 1
else:
integral += ((forecast - prev_forecast)
* (forecast_cdf - obs_cdf) ** 2)
forecast_cdf += weights[n] / total_weight
prev_forecast = forecast
if obs_cdf == 0:
# forecast can be undefined here if the loop body is never executed
# (because forecasts have size 0), but don't worry about that because
# we want to raise an error in that case, anyways
integral += obs - forecast
result[0] = integral
示例4: calculate_conditional_draws
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import guvectorize [as 別名]
def calculate_conditional_draws(
base_draws, updated_mean, updated_chols, chol_index, max_log_float, conditional_draw
):
"""Calculate the conditional draws from base draws, updated means and updated chols.
We need to pass ``max_log_float`` to the function, because the global variables
``MAX_LOG_FLOAT`` cannot be used directly withing the guvectorize.
Parameters
----------
base_draws : np.ndarray
iid standard normal draws
updated_mean : np.ndarray
conditional mean, given the observed shock. Contains the observed shock in the
corresponding position.
updated_chols : np.ndarray
cholesky factor of conditional covariance, given the observed shock. If there is
no measurement error, it contains a zero column and row at the position of the
observed shock.
chol_index : float
index of the relevant updated cholesky factor
max_log_float : float
Value at which numbers soon to be exponentiated are clipped.
Returns
-------
conditional draws : np.ndarray
draws from the conditional distribution of the shocks.
"""
n_draws, n_choices = base_draws.shape
n_wages = len(updated_chols) - 1
for d in range(n_draws):
for i in range(n_choices):
cd = updated_mean[i]
for j in range(i + 1):
cd += base_draws[d, j] * updated_chols[chol_index, i, j]
if i < n_wages:
if cd > max_log_float:
cd = max_log_float
cd = np.exp(cd)
conditional_draw[d, i] = cd