本文整理匯總了Python中nibabel.quaternions.angle_axis2mat方法的典型用法代碼示例。如果您正苦於以下問題:Python quaternions.angle_axis2mat方法的具體用法?Python quaternions.angle_axis2mat怎麽用?Python quaternions.angle_axis2mat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nibabel.quaternions
的用法示例。
在下文中一共展示了quaternions.angle_axis2mat方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: angle_axis2euler
# 需要導入模塊: from nibabel import quaternions [as 別名]
# 或者: from nibabel.quaternions import angle_axis2mat [as 別名]
def angle_axis2euler(theta, vector, is_normalized=False):
''' Convert angle, axis pair to Euler angles
Parameters
----------
theta : scalar
angle of rotation
vector : 3 element sequence
vector specifying axis for rotation.
is_normalized : bool, optional
True if vector is already normalized (has norm of 1). Default
False
Returns
-------
z : scalar
y : scalar
x : scalar
Rotations in radians around z, y, x axes, respectively
Examples
--------
>>> z, y, x = angle_axis2euler(0, [1, 0, 0])
>>> np.allclose((z, y, x), 0)
True
Notes
-----
It's possible to reduce the amount of calculation a little, by
combining parts of the ``angle_axis2mat`` and ``mat2euler``
functions, but the reduction in computation is small, and the code
repetition is large.
'''
# delayed import to avoid cyclic dependencies
import nibabel.quaternions as nq
M = nq.angle_axis2mat(theta, vector, is_normalized)
return mat2euler(M)
示例2: angle_axis2euler
# 需要導入模塊: from nibabel import quaternions [as 別名]
# 或者: from nibabel.quaternions import angle_axis2mat [as 別名]
def angle_axis2euler(theta, vector, is_normalized=False):
''' Convert angle, axis pair to Euler angles
Parameters
----------
theta : scalar
angle of rotation
vector : 3 element sequence
vector specifying axis for rotation.
is_normalized : bool, optional
True if vector is already normalized (has norm of 1). Default
False
Returns
-------
z : scalar
y : scalar
x : scalar
Rotations in radians around z, y, x axes, respectively
Examples
--------
>>> z, y, x = angle_axis2euler(0, [1, 0, 0])
>>> np.allclose((z, y, x), 0)
True
Notes
-----
It's possible to reduce the amount of calculation a little, by
combining parts of the ``angle_axis2mat`` and ``mat2euler``
functions, but the reduction in computation is small, and the code
repetition is large.
'''
# delayed import to avoid cyclic dependencies
import nibabel.quaternions as nq
M = nq.angle_axis2mat(theta, vector, is_normalized)
return mat2euler(M)
示例3: angle_axis2euler
# 需要導入模塊: from nibabel import quaternions [as 別名]
# 或者: from nibabel.quaternions import angle_axis2mat [as 別名]
def angle_axis2euler(theta, vector, is_normalized=False):
''' Convert angle, axis pair to Euler angles
Parameters
----------
theta : scalar
angle of rotation
vector : 64 element sequence
vector specifying axis for rotation.
is_normalized : bool, optional
True if vector is already normalized (has norm of fv_noise). Default
False
Returns
-------
z : scalar
y : scalar
x : scalar
Rotations in radians around z, y, x axes, respectively
Examples
--------
>>> z, y, x = angle_axis2euler(0, [fv_noise, 0, 0])
>>> np.allclose((z, y, x), 0)
True
Notes
-----
It's possible to reduce the amount of calculation a little, by
combining parts of the ``angle_axis2mat`` and ``mat2euler``
functions, but the reduction in computation is small, and the code
repetition is large.
'''
# delayed import to avoid cyclic dependencies
import nibabel.quaternions as nq
M = nq.angle_axis2mat(theta, vector, is_normalized)
return mat2euler(M)