當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.to_numpy_array方法代碼示例

本文整理匯總了Python中networkx.to_numpy_array方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.to_numpy_array方法的具體用法?Python networkx.to_numpy_array怎麽用?Python networkx.to_numpy_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.to_numpy_array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: seed

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def seed(value: Optional[int]) -> None:
    """Seed for random number generators.

    Wrapper function for `numpy.random.seed <https://docs.scipy.org/doc/numpy//reference/generated
    /numpy.random.seed.html>`_ to seed all NumPy-based random number generators. This allows for
    repeatable sampling.

    **Example usage:**

    >>> g = nx.erdos_renyi_graph(5, 0.7)
    >>> a = nx.to_numpy_array(g)
    >>> seed(1967)
    >>> sample(a, 3, 4)
    [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 0, 0, 0]]
    >>> seed(1967)
    >>> sample(a, 3, 4)
    [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 0, 0, 0]]

    Args:
        value (int): random seed
    """
    np.random.seed(value) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:24,代碼來源:sample.py

示例2: _get_state

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def _get_state(graph: nx.Graph, n_mean: float = 5, loss: float = 0.0) -> BaseGaussianState:
    r"""Embeds the input graph into a GBS device and returns the corresponding Gaussian state.
    """
    modes = graph.order()
    A = nx.to_numpy_array(graph)
    mean_photon_per_mode = n_mean / float(modes)

    p = sf.Program(modes)

    # pylint: disable=expression-not-assigned
    with p.context as q:
        sf.ops.GraphEmbed(A, mean_photon_per_mode=mean_photon_per_mode) | q

        if loss:
            for _q in q:
                sf.ops.LossChannel(1 - loss) | _q

    eng = sf.LocalEngine(backend="gaussian")
    return eng.run(p).state 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:21,代碼來源:similarity.py

示例3: deobfuscator

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def deobfuscator(dict_of_dicts):
    #====Work backwards====
    #Build graph from dict_of_dicts:
    graph_from_dict = nx.DiGraph(dict_of_dicts)

    #Get adjacency matrix of graph
    graph_array = nx.to_numpy_array(graph_from_dict)

    #Change 1's to 255's to save as an image
    graph_array[graph_array == 1] = 255
    image_from_array = Image.fromarray(graph_array).convert("L")
    #We can send the array directly to OCR, but I like to see the image.
    image_from_array.save("obfuscated.png")

    #Run OCR on our image
    return pytesseract.image_to_string("obfuscated.png") 
開發者ID:python-discord,項目名稱:esoteric-python-challenges,代碼行數:18,代碼來源:salts_solution.py

示例4: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def __init__(self, graph, rep_size=128):
        self.g = graph
        self.node_size = self.g.G.number_of_nodes()
        self.rep_size = rep_size
        self.adj_mat = nx.to_numpy_array(self.g.G)
        self.vectors = {}
        self.embeddings = self.get_train()
        look_back = self.g.look_back_list

        for i, embedding in enumerate(self.embeddings):
            self.vectors[look_back[i]] = embedding 
開發者ID:thunlp,項目名稱:OpenNE,代碼行數:13,代碼來源:lap.py

示例5: mock_batch

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def mock_batch(batch_size):
    """construct pyG batch"""
    graphs = []
    while len(graphs) < batch_size:
        G = nx.erdos_renyi_graph(np.random.choice([300, 500]), 0.5)
        if G.number_of_edges() > 1:
            graphs.append(G)

    adjs = [torch.from_numpy(nx.to_numpy_array(G)) for G in graphs]
    graph_data = [dense_to_sparse(A) for A in adjs]
    data_list = [Data(x=x, edge_index=e) for (e, x) in graph_data]
    return Batch.from_data_list(data_list) 
開發者ID:diningphil,項目名稱:gnn-comparison,代碼行數:14,代碼來源:batch_utils.py

示例6: get_edge_index

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def get_edge_index(self):
        adj = torch.Tensor(nx.to_numpy_array(self))
        edge_index, _ = dense_to_sparse(adj)
        return edge_index 
開發者ID:diningphil,項目名稱:gnn-comparison,代碼行數:6,代碼來源:graph.py

示例7: test_real_degenerate

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def test_real_degenerate(self):
        """Verify that the Takagi decomposition returns a matrix that is unitary and results in a
        correct decomposition when input a real but highly degenerate matrix. This test uses the
        adjacency matrix of a balanced tree graph."""
        g = nx.balanced_tree(2, 4)
        a = nx.to_numpy_array(g)
        rl, U = dec.takagi(a)
        assert np.allclose(U @ U.conj().T, np.eye(len(a)))
        assert np.allclose(U @ np.diag(rl) @ U.T, a) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:11,代碼來源:test_decompositions.py

示例8: _chromatic_number_upper_bound

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def _chromatic_number_upper_bound(G):
    # tries to determine an upper bound on the chromatic number of G
    # Assumes G is not complete

    if not nx.is_connected(G):
        return max((_chromatic_number_upper_bound(G.subgraph(c))
                    for c in nx.connected_components(G)))

    n_nodes = len(G.nodes)
    n_edges = len(G.edges)

    # chi * (chi - 1) <= 2 * |E|
    quad_bound = math.ceil((1 + math.sqrt(1 + 8 * n_edges)) / 2)

    if n_nodes % 2 == 1 and is_cycle(G):
        # odd cycle graphs need three colors
        bound = 3
    elif n_nodes > 2:
        try:
            import numpy as np
        except ImportError:
            # chi <= max degree, unless it is complete or a cycle graph of odd length,
            # in which case chi <= max degree + 1 (Brook's Theorem)
            bound = max(G.degree(node) for node in G)
        else:
            # Let A be the adj matrix of G (symmetric, 0 on diag). Let theta_1
            # be the largest eigenvalue of A. Then chi <= theta_1 + 1 with
            # equality iff G is complete or an odd cycle.
            # this is strictly better than brooks theorem
            bound = math.ceil(max(np.linalg.eigvals(nx.to_numpy_array(G))))
    else:
        # we know it's connected
        bound = n_nodes

    return min(quad_bound, bound) 
開發者ID:dwavesystems,項目名稱:dwave_networkx,代碼行數:37,代碼來源:coloring.py

示例9: dist

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def dist(self, G1, G2):
        r"""Frobenius distance between two graphs.

        If :math:`a_{ij}` and :math:`b_{ij}` are the two adjacency matrices
        we define

        .. math::
            d(G1, G2) = \sqrt{\sum_{i,j} |a_{ij} - b_{ij}|^2}


        The results dictionary also stores a 2-tuple of the underlying
        adjacency matrices in the key `'adjacency_matrices'`.

        Parameters
        ----------
        G1, G2 (nx.Graph)
            two graphs to compare

        Returns
        -------
        float
            the distance between `G1` and `G2`

        Notes
        -----

        The graphs must have the same number of nodes.

        """

        adj1 = nx.to_numpy_array(G1)
        adj2 = nx.to_numpy_array(G2)
        dist = np.linalg.norm((adj1 - adj2))
        self.results['dist'] = dist
        self.results['adjacency_matrices'] = adj1, adj2
        return dist 
開發者ID:netsiphd,項目名稱:netrd,代碼行數:38,代碼來源:frobenius.py

示例10: get_resistance_matrix

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def get_resistance_matrix(G):
    """Get the resistance matrix of a networkx graph.

    The resistance matrix of a graph :math:`G` is calculated as
    :math:`R = \text{diag}(L_i) 1^T + 1 \text{diag}(L_i)^T - 2L_i`,
    where L_i is the Moore-Penrose pseudoinverse of the Laplacian of :math:`G`.

    Parameters
    ----------
    G (nx.Graph): networkx graph from which to get its resistance matrix

    Returns
    -------
    R (np.array): resistance matrix of G

    """
    # Get adjacency matrix
    n = len(G.nodes())
    A = nx.to_numpy_array(G)
    # Get Laplacian
    D = np.diag(A.sum(axis=0))
    L = D - A
    # Get Moore-Penrose pseudoinverses of Laplacian
    # Note: converts to dense matrix and introduces n^2 operation here
    I = np.eye(n)
    J = (1 / n) * np.ones((n, n))
    L_i = np.linalg.solve(L + J, I) - J
    # Get resistance matrix
    ones = np.ones(n)
    ones = ones.reshape((1, n))
    L_i_diag = np.diag(L_i)
    L_i_diag = L_i_diag.reshape((n, 1))
    R = np.dot(L_i_diag, ones) + np.dot(ones.T, L_i_diag.T) - 2 * L_i
    return R 
開發者ID:netsiphd,項目名稱:netrd,代碼行數:36,代碼來源:resistance_perturbation.py

示例11: test_tnet_to_nx

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def test_tnet_to_nx():
    df = pd.DataFrame({'i': [0, 0], 'j': [1, 2], 't': [0, 1]})
    dfnx = teneto.utils.tnet_to_nx(df, t=0)
    G = nx.to_numpy_array(dfnx)
    if not G.shape == (2, 2):
        raise AssertionError()
    if not G[0, 1] == 1:
        raise AssertionError() 
開發者ID:wiheto,項目名稱:teneto,代碼行數:10,代碼來源:test_io.py

示例12: test_graphin

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def test_graphin(self):
        G = nx.from_numpy_array(self.A)
        np.testing.assert_array_equal(nx.to_numpy_array(G), gs.utils.import_graph(G)) 
開發者ID:neurodata,項目名稱:graspy,代碼行數:5,代碼來源:test_io.py

示例13: test_graphin

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def test_graphin(self):
        G = nx.from_numpy_array(self.A)
        np.testing.assert_array_equal(nx.to_numpy_array(G), gus.import_graph(G)) 
開發者ID:neurodata,項目名稱:graspy,代碼行數:5,代碼來源:test_utils.py

示例14: test_lcc_networkx

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def test_lcc_networkx(self):
        expected_lcc_matrix = np.array(
            [
                [0, 1, 1, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 1, 1],
                [0, 1, 0, 0, 0],
                [0, 0, 1, 0, 0],
            ]
        )
        expected_nodelist = np.array([1, 2, 3, 4, 6])
        g = nx.DiGraph()
        [g.add_node(i) for i in range(1, 7)]
        g.add_edge(1, 2)
        g.add_edge(1, 3)
        g.add_edge(3, 4)
        g.add_edge(3, 4)
        g.add_edge(3, 6)
        g.add_edge(6, 3)
        g.add_edge(4, 2)
        lcc, nodelist = gus.get_lcc(g, return_inds=True)
        lcc_matrix = nx.to_numpy_array(lcc)
        np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix)
        np.testing.assert_array_equal(nodelist, expected_nodelist)
        lcc = gus.get_lcc(g)
        lcc_matrix = nx.to_numpy_array(lcc)
        np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix) 
開發者ID:neurodata,項目名稱:graspy,代碼行數:29,代碼來源:test_utils.py

示例15: test_lcc_numpy

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import to_numpy_array [as 別名]
def test_lcc_numpy(self):
        expected_lcc_matrix = np.array(
            [
                [0, 1, 1, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 1, 1],
                [0, 1, 0, 0, 0],
                [0, 0, 1, 0, 0],
            ]
        )
        expected_nodelist = np.array([0, 1, 2, 3, 5])
        g = nx.DiGraph()
        [g.add_node(i) for i in range(1, 7)]
        g.add_edge(1, 2)
        g.add_edge(1, 3)
        g.add_edge(3, 4)
        g.add_edge(3, 4)
        g.add_edge(3, 6)
        g.add_edge(6, 3)
        g.add_edge(4, 2)
        g = nx.to_numpy_array(g)
        lcc_matrix, nodelist = gus.get_lcc(g, return_inds=True)
        np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix)
        np.testing.assert_array_equal(nodelist, expected_nodelist)
        lcc_matrix = gus.get_lcc(g)
        np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix) 
開發者ID:neurodata,項目名稱:graspy,代碼行數:28,代碼來源:test_utils.py


注:本文中的networkx.to_numpy_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。