本文整理匯總了Python中networkx.average_clustering方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.average_clustering方法的具體用法?Python networkx.average_clustering怎麽用?Python networkx.average_clustering使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.average_clustering方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: avg_transitivity
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def avg_transitivity(graph, communities, **kwargs):
"""Average transitivity.
The average transitivity of a community is defined the as the average clustering coefficient of its nodes w.r.t. their connection within the community itself.
:param graph: a networkx/igraph object
:param communities: NodeClustering object
:param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
:return: If **summary==True** a FitnessResult object, otherwise a list of floats.
Example:
>>> from cdlib.algorithms import louvain
>>> from cdlib import evaluation
>>> g = nx.karate_club_graph()
>>> communities = louvain(g)
>>> scd = evaluation.avg_transitivity(g,communities)
"""
return __quality_indexes(graph, communities,
lambda graph, coms: nx.average_clustering(nx.subgraph(graph, coms)),
**kwargs)
示例2: plot_clustering_coefficient
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def plot_clustering_coefficient(_g, _plot_img, interval=30):
"""Plot the clustering coefficient transition
:param _g: Transaction graph
:param _plot_img: Output image file
:param interval: Simulation step interval for plotting
(it takes too much time to compute clustering coefficient)
:return:
"""
date_list = get_date_list(_g)
gg = nx.Graph()
edges = defaultdict(list)
for k, v in nx.get_edge_attributes(_g, "date").items():
e = (k[0], k[1])
edges[v].append(e)
sample_dates = list()
values = list()
for i, t in enumerate(date_list):
gg.add_edges_from(edges[t])
if i % interval == 0:
v = nx.average_clustering(gg) if gg.number_of_nodes() else 0.0
sample_dates.append(t)
values.append(v)
print("Clustering coefficient at %s: %f" % (str(t), v))
plt.figure(figsize=(16, 12))
plt.clf()
plt.plot(sample_dates, values, 'bo-')
plt.title("Clustering Coefficient Transition")
plt.xlabel("date")
plt.ylabel("Clustering Coefficient")
plt.savefig(_plot_img)
示例3: get_clustering_coeff
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def get_clustering_coeff(edge_list):
G = nx.from_edgelist(edgelist=edge_list)
clust_coeff = nx.average_clustering(G)
# print(nx.number_of_nodes(G), ' : ',clust_coeff)
return clust_coeff
示例4: test_k5
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_k5(self):
G = nx.complete_graph(5)
assert_equal(list(nx.clustering(G,weight='weight').values()),[1, 1, 1, 1, 1])
assert_equal(nx.average_clustering(G,weight='weight'),1)
G.remove_edge(1,2)
assert_equal(list(nx.clustering(G,weight='weight').values()),
[5./6., 1.0, 1.0, 5./6., 5./6.])
assert_equal(nx.clustering(G,[1,4],weight='weight'),{1: 1.0, 4: 0.83333333333333337})
示例5: test_average_clustering
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_average_clustering():
G=nx.cycle_graph(3)
G.add_edge(2,3)
assert_equal(nx.average_clustering(G),(1+1+1/3.0)/4.0)
assert_equal(nx.average_clustering(G,count_zeros=True),(1+1+1/3.0)/4.0)
assert_equal(nx.average_clustering(G,count_zeros=False),(1+1+1/3.0)/3.0)
示例6: test_petersen
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_petersen():
# Actual coefficient is 0
G = nx.petersen_graph()
assert_equal(average_clustering(G, trials=int(len(G)/2)),
nx.average_clustering(G))
示例7: test_dodecahedral
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_dodecahedral():
# Actual coefficient is 0
G = nx.dodecahedral_graph()
assert_equal(average_clustering(G, trials=int(len(G)/2)),
nx.average_clustering(G))
示例8: test_empty
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_empty():
G = nx.empty_graph(5)
assert_equal(average_clustering(G, trials=int(len(G)/2)), 0)
示例9: test_complete
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_complete():
G = nx.complete_graph(5)
assert_equal(average_clustering(G, trials=int(len(G)/2)), 1)
G = nx.complete_graph(7)
assert_equal(average_clustering(G, trials=int(len(G)/2)), 1)
示例10: test_random_reference
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_random_reference():
G = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng)
Gr = random_reference(G, niter=1, seed=rng)
C = nx.average_clustering(G)
Cr = nx.average_clustering(Gr)
assert_true(C > Cr)
assert_raises(nx.NetworkXError, random_reference, nx.Graph())
assert_raises(nx.NetworkXNotImplemented, random_reference, nx.DiGraph())
H = nx.Graph(((0, 1), (2, 3)))
Hl = random_reference(H, niter=1, seed=rng)
示例11: test_k5
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_k5(self):
G = nx.complete_graph(5, create_using=nx.DiGraph())
assert_equal(list(nx.clustering(G).values()), [1, 1, 1, 1, 1])
assert_equal(nx.average_clustering(G), 1)
G.remove_edge(1, 2)
assert_equal(list(nx.clustering(G).values()),
[11. / 12., 1.0, 1.0, 11. / 12., 11. / 12.])
assert_equal(nx.clustering(G, [1, 4]), {1: 1.0, 4: 11. /12.})
G.remove_edge(2, 1)
assert_equal(list(nx.clustering(G).values()),
[5. / 6., 1.0, 1.0, 5. / 6., 5. / 6.])
assert_equal(nx.clustering(G, [1, 4]), {1: 1.0, 4: 0.83333333333333337})
示例12: test_average_clustering
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_average_clustering():
G = nx.cycle_graph(3)
G.add_edge(2, 3)
assert_equal(nx.average_clustering(G), (1 + 1 + 1 / 3.0) / 4.0)
assert_equal(nx.average_clustering(G, count_zeros=True), (1 + 1 + 1 / 3.0) / 4.0)
assert_equal(nx.average_clustering(G, count_zeros=False), (1 + 1 + 1 / 3.0) / 3.0)
示例13: test_petersen
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_petersen():
# Actual coefficient is 0
G = nx.petersen_graph()
assert_equal(average_clustering(G, trials=int(len(G) / 2)),
nx.average_clustering(G))
示例14: test_petersen_seed
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_petersen_seed():
# Actual coefficient is 0
G = nx.petersen_graph()
assert_equal(average_clustering(G, trials=int(len(G) / 2), seed=1),
nx.average_clustering(G))
示例15: test_tetrahedral
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import average_clustering [as 別名]
def test_tetrahedral():
# Actual coefficient is 1
G = nx.tetrahedral_graph()
assert_equal(average_clustering(G, trials=int(len(G) / 2)),
nx.average_clustering(G))