當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.ticklabel_format方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.ticklabel_format方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.ticklabel_format方法的具體用法?Python pyplot.ticklabel_format怎麽用?Python pyplot.ticklabel_format使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.ticklabel_format方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: subfig_evo_el_energy

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def subfig_evo_el_energy(ax_energy, g, legend, **kwargs):
    number_ticks = 6

    el_energy = g.el_energy * m_e_MeV
    el_energy_av = int(np.mean(el_energy))
    ax_energy.plot(g.z, np.average(el_energy - el_energy_av, axis=0), 'b-', linewidth=1.5)
    ax_energy.set_ylabel('E + ' + str(el_energy_av) + '[MeV]')
    ax_energy.ticklabel_format(axis='y', style='sci', scilimits=(-3, 3), useOffset=False)
    ax_energy.grid(kwargs.get('grid', True))

    ax_spread = ax_energy.twinx()
    ax_spread.plot(g.z, np.average(g.el_e_spread * m_e_GeV * 1000, weights=g.I, axis=0), 'm--', g.z,
                   np.amax(g.el_e_spread * m_e_GeV * 1000, axis=0), 'r--', linewidth=1.5)
    ax_spread.set_ylabel(r'$\sigma_E$ [MeV]')
    ax_spread.grid(False)
    ax_spread.set_ylim(ymin=0)

    ax_energy.yaxis.major.locator.set_params(nbins=number_ticks)
    ax_spread.yaxis.major.locator.set_params(nbins=number_ticks)

    ax_energy.tick_params(axis='y', which='both', colors='b')
    ax_energy.yaxis.label.set_color('b')
    ax_spread.tick_params(axis='y', which='both', colors='r')
    ax_spread.yaxis.label.set_color('r') 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:26,代碼來源:genesis_plot.py

示例2: plot_clustering_3d

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_clustering_3d(obj, data_local, data_global, filename):


    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111, projection='3d')

    colors = get_colors(len(obj.c_to_ind))

    ax.plot(*zip(*data_global), marker='o', color='k', ls='', ms=4., mew=1.0, alpha=0.4, mec='none')

    for i,c in enumerate(obj.c_to_ind):
        ax.plot(*zip(*data_local[obj.c_to_ind[c]]), marker='o', color=colors[i], ls='', ms=4., mew=1.0, alpha=0.8, mec='none')
        

    plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
    ax.view_init(*params.ANGLE)
    #plt.grid(True)
    #ax.set_axis_bgcolor('grey')


    
    fig.savefig(filename, format='png')

    plt.close() 
開發者ID:ksanjeevan,項目名稱:mapper-tda,代碼行數:26,代碼來源:em_3d_help.py

示例3: plot_clustering

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_clustering(obj, data, filename, axis_str=('', ''), tit_str_add='', anot=None):

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111)

    colors = get_colors(len(obj.c_to_ind))

    for i,c in enumerate(obj.c_to_ind):
        plt.plot(*zip(*data[obj.c_to_ind[c]]), marker='o', color=colors[i], ls='', ms=4., mew=1.0, alpha=0.8, mec='none')

    plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
    #plt.grid(True)
    #ax.set_axis_bgcolor('grey')
    plt.xlabel(axis_str[0])
    plt.ylabel(axis_str[1])
    fig.savefig(filename, format='png')

    plt.close() 
開發者ID:ksanjeevan,項目名稱:mapper-tda,代碼行數:20,代碼來源:em_help.py

示例4: plot_from_summaries

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_from_summaries(summaries_path, title=None, samples_per_update=512, updates_per_log=100):
    acc = EventAccumulator(summaries_path)
    acc.Reload()

    rews_mean = np.array([s[2] for s in acc.Scalars('Rewards/Mean')])
    rews_std = np.array([s[2] for s in acc.Scalars('Rewards/Std')])
    x = samples_per_update * updates_per_log * np.arange(0, len(rews_mean))

    if not title:
        title = summaries_path.split('/')[-1].split('_')[0]

    plt.plot(x, rews_mean)
    plt.fill_between(x, rews_mean - rews_std, rews_mean + rews_std, alpha=0.2)
    plt.xlabel('Samples')
    plt.ylabel('Episode Rewards')
    plt.title(title)
    plt.xlim([0, x[-1]+1])
    plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) 
開發者ID:inoryy,項目名稱:reaver,代碼行數:20,代碼來源:plot.py

示例5: make_chart_misleading_y_axis

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def make_chart_misleading_y_axis(plt, mislead=True):

    mentions = [500, 505]
    years = [2013, 2014]

    plt.bar([2012.6, 2013.6], mentions, 0.8)
    plt.xticks(years)
    plt.ylabel("# of times I heard someone say 'data science'")

    # if you don't do this, matplotlib will label the x-axis 0, 1
    # and then add a +2.013e3 off in the corner (bad matplotlib!)
    plt.ticklabel_format(useOffset=False)

    if mislead:
        # misleading y-axis only shows the part above 500
        plt.axis([2012.5,2014.5,499,506])
        plt.title("Look at the 'Huge' Increase!")
    else:
        plt.axis([2012.5,2014.5,0,550])
        plt.title("Not So Huge Anymore.")       
    plt.show() 
開發者ID:joelgrus,項目名稱:data-science-from-scratch,代碼行數:23,代碼來源:visualizing_data.py

示例6: make_chart_misleading_y_axis

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def make_chart_misleading_y_axis(mislead=True):

    mentions = [500, 505]
    years = [2013, 2014]

    plt.bar([2012.6, 2013.6], mentions, 0.8)
    plt.xticks(years)
    plt.ylabel("# of times I heard someone say 'data science'")

    # if you don't do this, matplotlib will label the x-axis 0, 1
    # and then add a +2.013e3 off in the corner (bad matplotlib!)
    plt.ticklabel_format(useOffset=False)

    if mislead:
        # misleading y-axis only shows the part above 500
        plt.axis([2012.5,2014.5,499,506])
        plt.title("Look at the 'Huge' Increase!")
    else:
        plt.axis([2012.5,2014.5,0,550])
        plt.title("Not So Huge Anymore.")
    plt.show() 
開發者ID:joelgrus,項目名稱:data-science-from-scratch,代碼行數:23,代碼來源:visualizing_data.py

示例7: visualize

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def visualize(file_path):

  entries = []
  with open(file_path) as f:
    entries = [json.loads(line) for line in f.readlines() if line.strip()]

  if not entries:
    print('There is no data in file {}'.format(file_path))
    return

  pdf = backend_pdf.PdfPages("process_info.pdf")
  idx = 0
  names = [name for name in entries[0].keys() if name != 'time']
  times = [entry['time'] for entry in entries]

  for name in names:
    values = [entry[name] for entry in entries]
    fig = plt.figure()
    ax = plt.gca()
    ax.yaxis.set_major_formatter(tick.ScalarFormatter(useMathText=True))
    plt.ticklabel_format(style='sci', axis='y', scilimits=(-2,3))
    plt.plot(times, values, colors[idx % len(colors)], marker='x', label=name)
    plt.xlabel('Time (sec)')
    plt.ylabel(name)
    plt.ylim(ymin=0)
    plt.legend(loc = 'upper left')
    pdf.savefig(fig)
    idx += 1

  plt.show()
  pdf.close()
  print('Generated process_info.pdf from {}'.format(file_path)) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:34,代碼來源:plot_process_info.py

示例8: subfig_z_energy_espread_bunching

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def subfig_z_energy_espread_bunching(ax_energy, g, zi=None, x_units='um', legend=False, *args, **kwargs):
    ax_energy.clear()
    number_ticks = 6

    if x_units == 'um':
        ax_energy.set_xlabel(r's [$\mu$m]')
        x = g.t * speed_of_light * 1.0e-15 * 1e6
    elif x_units == 'fs':
        ax_energy.set_xlabel(r't [fs]')
        x = g.t
    else:
        raise ValueError('Unknown parameter x_units (should be um or fs)')

    if zi == None:
        zi = -1

    ax_energy.plot(x, g.el_energy[:, zi] * m_e_GeV, 'b-', x, (g.el_energy[:, zi] + g.el_e_spread[:, zi]) * m_e_GeV,
                   'r--', x, (g.el_energy[:, zi] - g.el_e_spread[:, zi]) * m_e_GeV, 'r--')
    ax_energy.set_ylabel(r'$E\pm\sigma_E$ [GeV]')
    # ax_energy.ticklabel_format(axis='y', style='sci', scilimits=(-3, 3), useOffset=False)
    ax_energy.ticklabel_format(useOffset=False, style='plain')
    ax_energy.grid(kwargs.get('grid', True))
    # plt.yticks(plt.yticks()[0][0:-1])

    ax_bunching = ax_energy.twinx()
    ax_bunching.plot(x, g.bunching[:, zi], 'grey', linewidth=0.5)
    ax_bunching.set_ylabel('Bunching')
    ax_bunching.set_ylim(ymin=0)
    ax_bunching.grid(False)

    ax_energy.yaxis.major.locator.set_params(nbins=number_ticks)
    ax_bunching.yaxis.major.locator.set_params(nbins=number_ticks)

    ax_energy.tick_params(axis='y', which='both', colors='b')
    ax_energy.yaxis.label.set_color('b')

    ax_bunching.tick_params(axis='y', which='both', colors='grey')
    ax_bunching.yaxis.label.set_color('grey')

    ax_energy.set_xlim([x[0], x[-1]]) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:42,代碼來源:genesis_plot.py

示例9: subfig_z_energy_espread

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def subfig_z_energy_espread(ax_energy, g, zi=None, x_units='um', legend=False, *args, **kwargs):
    ax_energy.clear()
    number_ticks = 6

    if x_units == 'um':
        ax_energy.set_xlabel(r's [$\mu$m]')
        x = g.t * speed_of_light * 1.0e-15 * 1e6
    elif x_units == 'fs':
        ax_energy.set_xlabel(r't [fs]')
        x = g.t
    else:
        raise ValueError('Unknown parameter x_units (should be um or fs)')

    if zi == None:
        zi = -1

    ax_energy.plot(x, g.el_energy[:, zi] * m_e_GeV, 'b-', x, (g.el_energy[:, zi] + g.el_e_spread[:, zi]) * m_e_GeV,
                   'r--', x, (g.el_energy[:, zi] - g.el_e_spread[:, zi]) * m_e_GeV, 'r--')
    ax_energy.set_ylabel(r'$E\pm\sigma_E$ [GeV]')
    # ax_energy.ticklabel_format(axis='y', style='sci', scilimits=(-3, 3), useOffset=False)
    ax_energy.ticklabel_format(useOffset=False, style='plain')
    ax_energy.grid(kwargs.get('grid', True))
    # plt.yticks(plt.yticks()[0][0:-1])

    ax_energy.yaxis.major.locator.set_params(nbins=number_ticks)
    ax_energy.tick_params(axis='y', which='both', colors='b')
    ax_energy.yaxis.label.set_color('b')

    ax_energy.set_xlim([x[0], x[-1]]) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:31,代碼來源:genesis_plot.py

示例10: plot_data

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_data(
    data,
    xaxis="Epoch",
    value="AverageEpRet",
    condition="Condition1",
    smooth=1,
    **kwargs
):
    if smooth > 1:
        """
        smooth data with moving window average.
        that is,
            smoothed_y[t] = average(y[t-k], y[t-k+1], ..., y[t+k-1], y[t+k])
        where the "smooth" param is width of that window (2k+1)
        """
        y = np.ones(smooth)
        for datum in data:
            x = np.asarray(datum[value])
            z = np.ones(len(x))
            smoothed_x = np.convolve(x, y, "same") / np.convolve(z, y, "same")
            datum[value] = smoothed_x

    if isinstance(data, list):
        data = pd.concat(data, ignore_index=True)
    sns.set(style="darkgrid", font_scale=1.5)
    sns.lineplot(data=data, x=xaxis, y=value, hue=condition, ci="sd", **kwargs)
    plt.legend(
        loc="upper center", ncol=3, handlelength=1, borderaxespad=0.0, prop={"size": 13}
    ).set_draggable(True)

    xscale = np.max(np.asarray(data[xaxis])) > 5e3
    if xscale:
        # Just some formatting niceness: x-axis scale in scientific notation if max x is large
        plt.ticklabel_format(style="sci", axis="x", scilimits=(0, 0))

    plt.tight_layout(pad=0.5) 
開發者ID:kashif,項目名稱:firedup,代碼行數:38,代碼來源:plot.py

示例11: plot_convergence_curve

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_convergence_curve(data, info, dirname):
    # plot the convergence curve
    eps = 1e-6

    # compute the best pobj over all methods
    best_pobj = np.min([np.min(r['pobj']) for _, r in data])

    fig = plt.figure("convergence", figsize=(12, 12))
    plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))

    color_cycle = itertools.cycle(COLORS)
    for (args, res), color in zip(data, color_cycle):
        times = list(np.cumsum(res['times']))
        plt.loglog(
            times, (res['pobj'] - best_pobj) / best_pobj + eps, '.-',
            label=get_label(info['grid_key'], args), color=color,
            linewidth=2)
    plt.xlabel('Time (s)', fontsize=24)
    plt.ylabel('Objective value', fontsize=24)
    ncol = int(np.ceil(len(data) / 10))
    plt.legend(ncol=ncol, fontsize=24)

    plt.gca().tick_params(axis='x', which='both', bottom=False, top=False)
    plt.gca().tick_params(axis='y', which='both', left=False, right=False)
    plt.tight_layout()
    plt.grid(True)
    figname = "{}/convergence.png".format(dirname)
    fig.savefig(figname, dpi=150) 
開發者ID:alphacsc,項目名稱:alphacsc,代碼行數:30,代碼來源:plot_output.py

示例12: print_save_plot_skyline

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def print_save_plot_skyline(tt, n_std=2.0, screen=True, save='', plot=''):
    if plot:
        import matplotlib.pyplot as plt

    skyline, conf = tt.merger_model.skyline_inferred(gen=50, confidence=n_std)
    if save: fh = open(save, 'w', encoding='utf-8')
    header1 = "Skyline assuming 50 gen/year and approximate confidence bounds (+/- %f standard deviations of the LH)\n"%n_std
    header2 = "date \tN_e \tlower \tupper"
    if screen: print('\t'+header1+'\t'+header2)
    if save: fh.write("#"+ header1+'#'+header2+'\n')
    for (x,y, y1, y2) in zip(skyline.x, skyline.y, conf[0], conf[1]):
        if screen: print("\t%1.1f\t%1.1f\t%1.1f\t%1.1f"%(x,y, y1, y2))
        if save: fh.write("%1.1f\t%1.1f\t%1.1f\t%1.1f\n"%(x,y, y1, y2))

    if save:
        print("\n --- written skyline to %s\n"%save)
        fh.close()

    if plot:
        plt.figure()
        plt.fill_between(skyline.x, conf[0], conf[1], color=(0.8, 0.8, 0.8))
        plt.plot(skyline.x, skyline.y, label='maximum likelihood skyline')
        plt.yscale('log')
        plt.legend()
        plt.ticklabel_format(axis='x',useOffset=False)
        plt.savefig(plot) 
開發者ID:neherlab,項目名稱:treetime,代碼行數:28,代碼來源:wrappers.py

示例13: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot(self, *args, plotTitle=None, showPlot=True, filename=None, **kwargs):
        dataFrame = self.select(*args, **kwargs).getDataFrame()
        if dataFrame.index.nlevels > 1:
            self._raiseException('Please restrict the dataset such that only one index is left.')
        ax = dataFrame.plot()
        plt.ticklabel_format(useOffset=False, style='plain')
        plt.title(plotTitle if plotTitle else kwargs)
        self.showPlot(showPlot=showPlot, filename=filename)
        return self 
開發者ID:mocnik-science,項目名稱:osm-python-tools,代碼行數:11,代碼來源:data.py

示例14: plot_data

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_data(data, xaxis='Epoch', value="AverageEpRet", condition="Condition1", smooth=1, **kwargs):
    if smooth > 1:
        """
        smooth data with moving window average.
        that is,
            smoothed_y[t] = average(y[t-k], y[t-k+1], ..., y[t+k-1], y[t+k])
        where the "smooth" param is width of that window (2k+1)
        """
        y = np.ones(smooth)
        for datum in data:
            x = np.asarray(datum[value])
            z = np.ones(len(x))
            smoothed_x = np.convolve(x,y,'same') / np.convolve(z,y,'same')
            datum[value] = smoothed_x

    if isinstance(data, list):
        data = pd.concat(data, ignore_index=True)
    sns.set(style="darkgrid", font_scale=1.5)
    sns.tsplot(data=data, time=xaxis, value=value, unit="Unit", condition=condition, ci='sd', **kwargs)
    """
    If you upgrade to any version of Seaborn greater than 0.8.1, switch from 
    tsplot to lineplot replacing L29 with:

        sns.lineplot(data=data, x=xaxis, y=value, hue=condition, ci='sd', **kwargs)

    Changes the colorscheme and the default legend style, though.
    """
    plt.legend(loc='best').set_draggable(True)
    #plt.legend(loc='upper center', ncol=3, handlelength=1,
    #           borderaxespad=0., prop={'size': 13})

    """
    For the version of the legend used in the Spinning Up benchmarking page, 
    swap L38 with:

    plt.legend(loc='upper center', ncol=6, handlelength=1,
               mode="expand", borderaxespad=0., prop={'size': 13})
    """

    xscale = np.max(np.asarray(data[xaxis])) > 5e3
    if xscale:
        # Just some formatting niceness: x-axis scale in scientific notation if max x is large
        plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))

    plt.tight_layout(pad=0.5) 
開發者ID:openai,項目名稱:spinningup,代碼行數:47,代碼來源:plot.py

示例15: plot_result

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ticklabel_format [as 別名]
def plot_result(rwd_lst, open_price, close_price):
    plt.subplot(211)

    # Baseline1: BnH
    ret = np.log(close_price / close_price.shift(1))
    ret.fillna(0, inplace=True)

    bnh = np.cumsum(ret.values) * 2
    plt.plot(bnh, label='BnH')

    # Baseline2: Momentum
    log_ret = np.log(close_price / open_price)

    sma = close_price.rolling(30, min_periods=1).mean()
    signal = (close_price > sma).shift(1).astype(float) * 4  # shift by 1 since we trade on the next opening price
    signal.fillna(0, inplace=True)

    mmt = np.cumsum(log_ret.values * signal.values)  # convert to cum. simple return
    plt.plot(mmt, label='MMT')

    # RL agent performance
    rl = np.cumsum(rwd_lst)

    plt.xticks(())
    plt.ylabel('Cumulative Log-Returns')
    plt.plot(rl, label='RL')
    plt.legend()

    def mdd(x):
        max_val = None
        temp = []
        for t in x:
            if max_val is None or t > max_val:
                max_val = t
            temp.append(t - max_val)
        return temp

    plt.subplot(212)
    plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
    plt.xlabel('Timesteps')
    plt.ylabel('MDD')
    plt.plot(mdd(bnh))
    plt.plot(mdd(mmt))
    plt.plot(mdd(rl))
    plt.show() 
開發者ID:ThirstyScholar,項目名稱:trading-bitcoin-with-reinforcement-learning,代碼行數:47,代碼來源:main.py


注:本文中的matplotlib.pyplot.ticklabel_format方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。