本文整理匯總了Python中matplotlib.pyplot.Figure方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.Figure方法的具體用法?Python pyplot.Figure怎麽用?Python pyplot.Figure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.Figure方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: FigureToSummary
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def FigureToSummary(name, fig):
"""Create tf.Summary proto from matplotlib.figure.Figure.
Args:
name: Summary name.
fig: A matplotlib figure object.
Returns:
A `tf.Summary` proto containing the figure rendered to an image.
"""
canvas = backend_agg.FigureCanvasAgg(fig)
fig.canvas.draw()
ncols, nrows = fig.canvas.get_width_height()
png_file = six.BytesIO()
canvas.print_figure(png_file)
png_str = png_file.getvalue()
return tf.Summary(value=[
tf.Summary.Value(
tag='%s/image' % name,
image=tf.Summary.Image(
height=nrows,
width=ncols,
colorspace=3,
encoded_image_string=png_str))
])
示例2: Curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def Curve(name, figsize, xs, ys, setter=None, **kwargs):
"""Plot curve(s) to a `tf.Summary` proto.
Args:
name: Image summary name.
figsize: A 2D tuple containing the overall figure (width, height) dimensions
in inches.
xs: x values for matplotlib.pyplot.plot.
ys: y values for matplotlib.pyplot.plot.
setter: A callable taking (fig, axes). Useful to fine-control layout of the
figure, xlabel, xticks, etc.
**kwargs: Extra args for matplotlib.pyplot.plot.
Returns:
A `tf.Summary` proto contains the line plot.
"""
fig = plt.Figure(figsize=figsize, dpi=100, facecolor='white')
axes = fig.add_subplot(1, 1, 1)
axes.plot(xs, ys, '.-', **kwargs)
if setter:
setter(fig, axes)
return FigureToSummary(name, fig)
示例3: fig2rgb_array
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def fig2rgb_array(fig: plt.Figure, expand_batch_dimension: bool = True
) -> np.ndarray:
"""
Convert matplotlib figure to numpy RGB array
Parameters
----------
fig
figure to convert
expand_batch_dimension
if the single batch dimension should be added
Returns
-------
figure_as_array
figure as numpy array
"""
fig.canvas.draw()
buf = fig.canvas.tostring_rgb()
ncols, nrows = fig.canvas.get_width_height()
shape = ((nrows, ncols, 3) if not expand_batch_dimension
else (1, nrows, ncols, 3))
return np.fromstring(buf, dtype=np.uint8).reshape(shape)
示例4: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def plot(self, **kwargs):
"""Plot current quadtree
:param axes: Axes instance to plot in, defaults to None
:type axes: [:py:class:`matplotlib.Axes`], optional
:param figure: Figure instance to plot in, defaults to None
:type figure: [:py:class:`matplotlib.Figure`], optional
:param **kwargs: kwargs are passed into `plt.imshow`
:type **kwargs: dict
"""
self._initImagePlot(**kwargs)
self.data = self._quadtree.leaf_matrix_means
self.title = 'Quadtree Means'
self._addInfoText()
if self._show_plt:
plt.show()
示例5: __init__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def __init__(self, _: Simulation, print_props: Tuple[prp.Property]):
"""
Constructor.
Sets here is ft_per_deg_lon, which depends dynamically on aircraft's
longitude (because of the conversion between geographic and Euclidean
coordinate systems). We retrieve longitude from the simulation and
assume it is constant thereafter.
:param _: (unused) Simulation that will be plotted
:param print_props: Propertys which will have their values printed to Figure.
Must be retrievable from the plotted Simulation.
"""
self.print_props = print_props
self.figure: plt.Figure = None
self.axes: AxesTuple = None
self.value_texts: Tuple[plt.Text] = None
示例6: _plot_and_save_attention
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def _plot_and_save_attention(att_w, filename):
"""Plot and save an attention."""
# dynamically import matplotlib due to not found error
from matplotlib.ticker import MaxNLocator
import os
d = os.path.dirname(filename)
if not os.path.exists(d):
os.makedirs(d)
w, h = plt.figaspect(1.0 / len(att_w))
fig = plt.Figure(figsize=(w * 2, h * 2))
axes = fig.subplots(1, len(att_w))
if len(att_w) == 1:
axes = [axes]
for ax, aw in zip(axes, att_w):
# plt.subplot(1, len(att_w), h)
ax.imshow(aw, aspect="auto")
ax.set_xlabel("Input")
ax.set_ylabel("Output")
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.tight_layout()
return fig
示例7: __init__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def __init__(self, main_window, locs):
super().__init__()
self.main_window = main_window
self.locs = locs
self.figure = plt.Figure()
self.canvas = FigureCanvasQTAgg(self.figure)
self.plot()
vbox = QtWidgets.QVBoxLayout()
self.setLayout(vbox)
vbox.addWidget(self.canvas)
vbox.addWidget((NavigationToolbar2QT(self.canvas, self)))
self.setWindowTitle("Picasso: Filter")
this_directory = os.path.dirname(os.path.realpath(__file__))
icon_path = os.path.join(this_directory, "icons", "filter.ico")
icon = QtGui.QIcon(icon_path)
self.setWindowIcon(icon)
示例8: __init__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def __init__(self, window_title):
super().__init__()
self.setWindowTitle(window_title)
this_directory = os.path.dirname(os.path.realpath(__file__))
icon_path = os.path.join(this_directory, "icons", "nanotron.ico")
icon = QtGui.QIcon(icon_path)
self.setWindowIcon(icon)
self.resize(1000, 500)
self.figure = plt.Figure()
self.canvas = FigureCanvas(self.figure)
vbox = QtWidgets.QVBoxLayout()
self.setLayout(vbox)
vbox.addWidget(self.canvas)
self.toolbar = NavigationToolbar(self.canvas, self)
vbox.addWidget(self.toolbar)
示例9: history_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def history_plot(train_hist, val_hist, model_name='', out_directory=None):
"""
Plot the training history of a model.
:param train_hist: array-like: training loss history
:param val_hist: array-like: validation loss history
:param model_name: str: name of model
:param out_directory: str: if not None, save the figure to this directory
:return: plt.Figure
"""
fig = plt.figure()
fig.set_size_inches(6, 4)
plt.plot(train_hist, label='train MAE', linewidth=2)
plt.plot(val_hist, label='val MAE', linewidth=2)
plt.grid(True, color='lightgray', zorder=-100)
plt.xlabel('epoch')
plt.ylabel('MAE')
plt.legend(loc='best')
plt.title('%s training history' % model_name)
if out_directory is not None:
plt.savefig('%s/%s_history.pdf' % (out_directory, remove_chars(model_name)), bbox_inches='tight')
return fig
示例10: plot_curve_with_area
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def plot_curve_with_area(x: Iterable[float],
y: Iterable[float],
xlabel: Text = 'x',
ylabel: Text = 'y') -> plt.Figure:
"""Plot the curve defined by inputs and the area under the curve.
All entries of x and y are required to lie between 0 and 1.
For example, x could be recall and y precision, or x is fpr and y is tpr.
Args:
x: Values on x-axis (1d)
y: Values on y-axis (must be same length as x)
xlabel: Label for x axis
ylabel: Label for y axis
Returns:
The matplotlib figure handle
"""
fig = plt.figure()
plt.plot([0, 1], [0, 1], 'k', lw=1.0)
plt.plot(x, y, lw=2, label=f'AUC: {metrics.auc(x, y):.3f}')
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend()
return fig
示例11: plot_histograms
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def plot_histograms(train: Iterable[float],
test: Iterable[float],
xlabel: Text = 'x',
thresh: float = None) -> plt.Figure:
"""Plot histograms of training versus test metrics."""
xmin = min(np.min(train), np.min(test))
xmax = max(np.max(train), np.max(test))
bins = np.linspace(xmin, xmax, 100)
fig = plt.figure()
plt.hist(test, bins=bins, density=True, alpha=0.5, label='test', log='y')
plt.hist(train, bins=bins, density=True, alpha=0.5, label='train', log='y')
if thresh is not None:
plt.axvline(thresh, c='r', label=f'threshold = {thresh:.3f}')
plt.xlabel(xlabel)
plt.ylabel('normalized counts (density)')
plt.legend()
return fig
示例12: test_bpt
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def test_bpt(self, maps, useoi):
if maps.bptsums is None:
pytest.skip('no bpt data found in galaxy test data')
bptflag = 'nooi' if useoi is False else 'global'
masks, figure, axes = maps.get_bpt(show_plot=False, return_figure=True, use_oi=useoi)
assert isinstance(figure, plt.Figure)
for mech in self.mechanisms:
assert mech in masks.keys()
assert np.sum(masks[mech]['global']) == maps.bptsums[bptflag][mech]
if useoi:
assert len(axes) == 4
else:
assert len(axes) == 3
for ax in axes:
assert isinstance(ax, LocatableAxes)
示例13: figure_image_adjustment
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def figure_image_adjustment(fig, img_size):
""" adjust figure as nice image without axis
:param fig: Figure
:param tuple(int,int) img_size: image size
:return Figure:
>>> fig = figure_image_adjustment(plt.figure(), (150, 200))
>>> isinstance(fig, matplotlib.figure.Figure)
True
"""
ax = fig.gca()
ax.set(xlim=[0, img_size[1]], ylim=[img_size[0], 0])
ax.axis('off')
ax.axes.get_xaxis().set_ticklabels([])
ax.axes.get_yaxis().set_ticklabels([])
fig.tight_layout(pad=0)
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
return fig
示例14: create_figure_by_image
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def create_figure_by_image(img_size, subfig_size, nb_subfigs=1, extend=0.):
""" crearting image according backround_image
:param tuple(int,int) img_size: image size
:param float subfig_size: maximal sub-figure size
:param int nb_subfigs: number of sub-figure
:param float extend: extension
:return tuple(Figure,list):
"""
norm_size = np.array(img_size) / float(np.max(img_size))
# reverse dimensions and scale by fig size
if norm_size[0] >= norm_size[1]: # horizontal
fig_size = norm_size[::-1] * subfig_size * np.array([nb_subfigs, 1])
fig_size[0] += extend * fig_size[0]
fig, axarr = plt.subplots(ncols=nb_subfigs, figsize=fig_size)
else: # vertical
fig_size = norm_size[::-1] * subfig_size * np.array([1, nb_subfigs])
fig_size[0] += extend * fig_size[0]
fig, axarr = plt.subplots(nrows=nb_subfigs, figsize=fig_size)
return fig, axarr
示例15: viz_memalloc
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import Figure [as 別名]
def viz_memalloc(
cls,
ugraph,
split_on_large_graph=True,
num_tensors_per_split=20,
figsize=None,
fontsize=12,
lw=12,
cmap=_cm.BrBG_r,
rand_seed=1111
):
seed(rand_seed)
if TensorAllocationPlanner.KWARGS_NAMESCOPE not in ugraph.attributes:
logger.info('No tensor allocation plan to visualize: %s', ugraph.name)
return plt.Figure()
alloc_plan = ugraph.attributes[TensorAllocationPlanner.KWARGS_NAMESCOPE]
topo_tensors = sorted(
[tensor_name for tensor_name in alloc_plan.plan],
key=lambda tensor_name: alloc_plan.plan[tensor_name].time_slot_start
)
return cls._draw_figs(topo_tensors, alloc_plan, cmap, figsize, fontsize, lw, split_on_large_graph, num_tensors_per_split)