當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.FrozenBatchNorm2d方法代碼示例

本文整理匯總了Python中maskrcnn_benchmark.layers.FrozenBatchNorm2d方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.FrozenBatchNorm2d方法的具體用法?Python layers.FrozenBatchNorm2d怎麽用?Python layers.FrozenBatchNorm2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在maskrcnn_benchmark.layers的用法示例。


在下文中一共展示了layers.FrozenBatchNorm2d方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import FrozenBatchNorm2d [as 別名]
def __init__(
        self,
        in_channels,
        bottleneck_channels,
        out_channels,
        num_groups=1,
        stride_in_1x1=True,
        stride=1,
        dilation=1,
        dcn_config={}
    ):
        super(BottleneckWithFixedBatchNorm, self).__init__(
            in_channels=in_channels,
            bottleneck_channels=bottleneck_channels,
            out_channels=out_channels,
            num_groups=num_groups,
            stride_in_1x1=stride_in_1x1,
            stride=stride,
            dilation=dilation,
            norm_func=FrozenBatchNorm2d,
            dcn_config=dcn_config
        ) 
開發者ID:simaiden,項目名稱:Clothing-Detection,代碼行數:24,代碼來源:resnet.py

示例2: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import FrozenBatchNorm2d [as 別名]
def __init__(self, inplanes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.inplanes = inplanes
        self.planes = planes
        self.conv1 = Conv2d(
            inplanes, planes, kernel_size=3,
            stride=stride, padding=1, bias=False)
        self.bn1 = FrozenBatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = Conv2d(
            planes, planes, kernel_size=3,
            stride=stride, padding=1, bias=False)
        self.bn2 = FrozenBatchNorm2d(planes)
        if self.inplanes != self.planes*self.expansion:
            self.downsample = nn.Sequential(
                Conv2d(self.inplanes, self.planes * self.expansion,
                       kernel_size=1, stride=stride, bias=False),
                FrozenBatchNorm2d(self.planes * self.expansion),
            ) 
開發者ID:HRNet,項目名稱:HRNet-MaskRCNN-Benchmark,代碼行數:21,代碼來源:hrnet.py

示例3: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import FrozenBatchNorm2d [as 別名]
def __init__(self, cfg):
        super(StemWithFixedBatchNorm, self).__init__()

        out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS

        self.conv1 = Conv2d(
            3, out_channels, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = FrozenBatchNorm2d(out_channels) 
開發者ID:KaiyuYue,項目名稱:cgnl-network.pytorch,代碼行數:11,代碼來源:resnet.py

示例4: _make_fuse_layers

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import FrozenBatchNorm2d [as 別名]
def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        num_inchannels = self.num_inchannels
        fuse_layers = []
        for i in range(num_branches if self.multi_scale_output else 1):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(nn.Sequential(
                        Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False),
                        FrozenBatchNorm2d(num_inchannels[i]),
                        nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv3x3s = []
                    for k in range(i-j):
                        if k == i - j - 1:
                            num_outchannels_conv3x3 = num_inchannels[i]
                            conv3x3s.append(nn.Sequential(
                                Conv2d(num_inchannels[j], num_outchannels_conv3x3,
                                       3, 2, 1, bias=False),
                                FrozenBatchNorm2d(num_outchannels_conv3x3)))
                        else:
                            num_outchannels_conv3x3 = num_inchannels[j]
                            conv3x3s.append(nn.Sequential(
                                Conv2d(num_inchannels[j], num_outchannels_conv3x3,
                                       3, 2, 1, bias=False),
                                FrozenBatchNorm2d(num_outchannels_conv3x3),
                                nn.ReLU(True)))
                    fuse_layer.append(nn.Sequential(*conv3x3s))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers) 
開發者ID:HRNet,項目名稱:HRNet-MaskRCNN-Benchmark,代碼行數:39,代碼來源:hrnet.py

示例5: _make_transition_layer

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import FrozenBatchNorm2d [as 別名]
def _make_transition_layer(
            self, num_channels_pre_layer, num_channels_cur_layer):
        num_branches_cur = len(num_channels_cur_layer)
        num_branches_pre = len(num_channels_pre_layer)

        transition_layers = []
        for i in range(num_branches_cur):
            if i < num_branches_pre:
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(nn.Sequential(
                        Conv2d(num_channels_pre_layer[i],
                               num_channels_cur_layer[i],
                               3,
                               1,
                               1,
                               bias=False),
                        FrozenBatchNorm2d(num_channels_cur_layer[i]),
                        nn.ReLU(inplace=True)))
                else:
                    transition_layers.append(None)
            else:
                conv3x3s = []
                for j in range(i+1-num_branches_pre):
                    inchannels = num_channels_pre_layer[-1]
                    outchannels = num_channels_cur_layer[i] \
                        if j == i-num_branches_pre else inchannels
                    conv3x3s.append(nn.Sequential(
                        Conv2d(
                            inchannels, outchannels, 3, 2, 1, bias=False),
                        FrozenBatchNorm2d(outchannels),
                        nn.ReLU(inplace=True)))
                transition_layers.append(nn.Sequential(*conv3x3s))

        return nn.ModuleList(transition_layers) 
開發者ID:HRNet,項目名稱:HRNet-MaskRCNN-Benchmark,代碼行數:36,代碼來源:hrnet.py


注:本文中的maskrcnn_benchmark.layers.FrozenBatchNorm2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。