當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv2d方法代碼示例

本文整理匯總了Python中maskrcnn_benchmark.layers.Conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv2d方法的具體用法?Python layers.Conv2d怎麽用?Python layers.Conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在maskrcnn_benchmark.layers的用法示例。


在下文中一共展示了layers.Conv2d方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, cfg, in_channels):
        super(MaskRCNNC4Predictor, self).__init__()
        num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES
        dim_reduced = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS[-1]
        num_inputs = in_channels

        self.conv5_mask = ConvTranspose2d(num_inputs, dim_reduced, 2, 2, 0)
        self.mask_fcn_logits = Conv2d(dim_reduced, num_classes, 1, 1, 0)

        for name, param in self.named_parameters():
            if "bias" in name:
                nn.init.constant_(param, 0)
            elif "weight" in name:
                # Caffe2 implementation uses MSRAFill, which in fact
                # corresponds to kaiming_normal_ in PyTorch
                nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:18,代碼來源:roi_mask_predictors.py

示例2: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, inplanes, planes, use_scale=False, groups=None):
        self.use_scale = use_scale
        self.groups = groups

        super(SpatialCGNL, self).__init__()
        # conv theta
        self.t = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)
        # conv phi
        self.p = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)
        # conv g
        self.g = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)
        # conv z
        self.z = nn.Conv2d(planes, inplanes, kernel_size=1, stride=1,
                                                  groups=self.groups, bias=False)
        self.gn = nn.GroupNorm(num_groups=self.groups, num_channels=inplanes)

        if self.use_scale:
            cprint("=> WARN: SpatialCGNL block uses 'SCALE'", \
                   'yellow')
        if self.groups:
            cprint("=> WARN: SpatialCGNL block uses '{}' groups".format(self.groups), \
                   'yellow') 
開發者ID:KaiyuYue,項目名稱:cgnl-network.pytorch,代碼行數:24,代碼來源:resnet.py

示例3: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, cfg):
        super(MaskRCNNC4Predictor, self).__init__()
        num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES
        dim_reduced = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS[-1]

        if cfg.MODEL.ROI_HEADS.USE_FPN:
            num_inputs = dim_reduced
        else:
            stage_index = 4
            stage2_relative_factor = 2 ** (stage_index - 1)
            res2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
            num_inputs = res2_out_channels * stage2_relative_factor

        self.conv5_mask = ConvTranspose2d(num_inputs, dim_reduced, 2, 2, 0)
        self.mask_fcn_logits = Conv2d(dim_reduced, num_classes, 1, 1, 0)

        for name, param in self.named_parameters():
            if "bias" in name:
                nn.init.constant_(param, 0)
            elif "weight" in name:
                # Caffe2 implementation uses MSRAFill, which in fact
                # corresponds to kaiming_normal_ in PyTorch
                nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") 
開發者ID:clw5180,項目名稱:remote_sensing_object_detection_2019,代碼行數:25,代碼來源:roi_mask_predictors.py

示例4: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, char_class, g_feat_channel=1024, inter_channel=256, gn=True):
        super(RECG, self).__init__()

        self.rec_conv1 = nn.Sequential(Conv2dGroup(g_feat_channel, inter_channel, 3, same_padding=True, gn=gn),
                                       Conv2dGroup(inter_channel, inter_channel, 3, same_padding=True, gn=gn),
                                       nn.Conv2d(inter_channel, inter_channel, 3, (2, 1), 1))

        inter_channel *= 2

        self.rec_conv2 = nn.Sequential(Conv2dGroup(inter_channel // 2, inter_channel, 3, same_padding=True, gn=gn),
                                       Conv2dGroup(inter_channel, inter_channel, 3, same_padding=True, gn=gn),
                                       nn.Conv2d(inter_channel, inter_channel, 3, (2, 1), 1))

        inter_channel *= 2

        self.rec_conv3 = nn.Sequential(Conv2dGroup(inter_channel // 2, inter_channel, 3, same_padding=True, gn=gn),
                                       Conv2dGroup(inter_channel, inter_channel, 3, same_padding=True, gn=gn),
                                       nn.Conv2d(inter_channel, inter_channel, 3, (2, 1), 1))

        # input with shape of [w, b, c] --> [20 timestamps, x fg_nums, 256 channels]
        self.blstm = nn.LSTM(inter_channel, int(inter_channel/2), bidirectional=True)
        self.embeddings = FC(inter_channel, char_class, relu=False) 
開發者ID:clw5180,項目名稱:remote_sensing_object_detection_2019,代碼行數:24,代碼來源:roi_rec_predictors.py

示例5: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, inplanes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.inplanes = inplanes
        self.planes = planes
        self.conv1 = Conv2d(
            inplanes, planes, kernel_size=3,
            stride=stride, padding=1, bias=False)
        self.bn1 = FrozenBatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = Conv2d(
            planes, planes, kernel_size=3,
            stride=stride, padding=1, bias=False)
        self.bn2 = FrozenBatchNorm2d(planes)
        if self.inplanes != self.planes*self.expansion:
            self.downsample = nn.Sequential(
                Conv2d(self.inplanes, self.planes * self.expansion,
                       kernel_size=1, stride=stride, bias=False),
                FrozenBatchNorm2d(self.planes * self.expansion),
            ) 
開發者ID:HRNet,項目名稱:HRNet-MaskRCNN-Benchmark,代碼行數:21,代碼來源:hrnet.py

示例6: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, cfg):
        super(KeypointRCNNFeatureExtractor, self).__init__()

        resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION
        scales = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SCALES
        sampling_ratio = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO
        pooler = Pooler(
            output_size=(resolution, resolution),
            scales=scales,
            sampling_ratio=sampling_ratio,
        )
        self.pooler = pooler

        input_features = cfg.MODEL.BACKBONE.OUT_CHANNELS
        layers = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_LAYERS
        next_feature = input_features
        self.blocks = []
        for layer_idx, layer_features in enumerate(layers, 1):
            layer_name = "conv_fcn{}".format(layer_idx)
            module = Conv2d(next_feature, layer_features, 3, stride=1, padding=1)
            nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
            nn.init.constant_(module.bias, 0)
            self.add_module(layer_name, module)
            next_feature = layer_features
            self.blocks.append(layer_name) 
開發者ID:mlperf,項目名稱:training,代碼行數:27,代碼來源:roi_keypoint_feature_extractors.py

示例7: make_conv3x3

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def make_conv3x3(
    in_channels, 
    out_channels, 
    dilation=1, 
    stride=1, 
    use_gn=False,
    use_relu=False,
    kaiming_init=True
):
    conv = Conv2d(
        in_channels, 
        out_channels, 
        kernel_size=3, 
        stride=stride, 
        padding=dilation, 
        dilation=dilation, 
        bias=False if use_gn else True
    )
    if kaiming_init:
        nn.init.kaiming_normal_(
            conv.weight, mode="fan_out", nonlinearity="relu"
        )
    else:
        torch.nn.init.normal_(conv.weight, std=0.01)
    if not use_gn:
        nn.init.constant_(conv.bias, 0)
    module = [conv,]
    if use_gn:
        module.append(group_norm(out_channels))
    if use_relu:
        module.append(nn.ReLU(inplace=True))
    if len(module) > 1:
        return nn.Sequential(*module)
    return conv 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:36,代碼來源:make_layers.py

示例8: conv_with_kaiming_uniform

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def conv_with_kaiming_uniform(use_gn=False, use_relu=False):
    def make_conv(
        in_channels, out_channels, kernel_size, stride=1, dilation=1
    ):
        conv = Conv2d(
            in_channels, 
            out_channels, 
            kernel_size=kernel_size, 
            stride=stride, 
            padding=dilation * (kernel_size - 1) // 2, 
            dilation=dilation, 
            bias=False if use_gn else True
        )
        # Caffe2 implementation uses XavierFill, which in fact
        # corresponds to kaiming_uniform_ in PyTorch
        nn.init.kaiming_uniform_(conv.weight, a=1)
        if not use_gn:
            nn.init.constant_(conv.bias, 0)
        module = [conv,]
        if use_gn:
            module.append(group_norm(out_channels))
        if use_relu:
            module.append(nn.ReLU(inplace=True))
        if len(module) > 1:
            return nn.Sequential(*module)
        return conv

    return make_conv 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:30,代碼來源:make_layers.py

示例9: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, cfg, in_channels):
        super(KeypointRCNNFeatureExtractor, self).__init__()

        resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION
        scales = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SCALES
        sampling_ratio = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO
        pooler = Pooler(
            output_size=(resolution, resolution),
            scales=scales,
            sampling_ratio=sampling_ratio,
        )
        self.pooler = pooler

        input_features = in_channels
        layers = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_LAYERS
        next_feature = input_features
        self.blocks = []
        for layer_idx, layer_features in enumerate(layers, 1):
            layer_name = "conv_fcn{}".format(layer_idx)
            module = Conv2d(next_feature, layer_features, 3, stride=1, padding=1)
            nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
            nn.init.constant_(module.bias, 0)
            self.add_module(layer_name, module)
            next_feature = layer_features
            self.blocks.append(layer_name)
        self.out_channels = layer_features 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:28,代碼來源:roi_keypoint_feature_extractors.py

示例10: __init__

# 需要導入模塊: from maskrcnn_benchmark import layers [as 別名]
# 或者: from maskrcnn_benchmark.layers import Conv2d [as 別名]
def __init__(self, cfg, norm_func):
        super(BaseStem, self).__init__()

        out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS

        self.conv1 = Conv2d(
            3, out_channels, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = norm_func(out_channels)

        for l in [self.conv1,]:
            nn.init.kaiming_uniform_(l.weight, a=1) 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:14,代碼來源:res2net.py


注:本文中的maskrcnn_benchmark.layers.Conv2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。