當前位置: 首頁>>代碼示例>>Python>>正文


Python util.tiny方法代碼示例

本文整理匯總了Python中librosa.util.tiny方法的典型用法代碼示例。如果您正苦於以下問題:Python util.tiny方法的具體用法?Python util.tiny怎麽用?Python util.tiny使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在librosa.util的用法示例。


在下文中一共展示了util.tiny方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: inverse

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import tiny [as 別名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]

        return inverse_transform 
開發者ID:alphacep,項目名稱:tn2-wg,代碼行數:32,代碼來源:stft.py

示例2: inverse

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import tiny [as 別名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = self._window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False).cuda()
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]

        return inverse_transform 
開發者ID:tiberiu44,項目名稱:TTS-Cube,代碼行數:31,代碼來源:stft.py

示例3: inverse

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import tiny [as 別名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
            inverse_transform[:, :,
                              approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:,
                                              :, :-int(self.filter_length/2):]

        return inverse_transform 
開發者ID:xcmyz,項目名稱:LightSpeech,代碼行數:34,代碼來源:stft.py

示例4: inverse

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import tiny [as 別名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
                approx_nonzero_indices].cuda()

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]

        return inverse_transform 
開發者ID:guanlongzhao,項目名稱:fac-via-ppg,代碼行數:32,代碼來源:stft.py

示例5: inverse

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import tiny [as 別名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length / 2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length / 2):]

        return inverse_transform 
開發者ID:foamliu,項目名稱:Tacotron2-Mandarin,代碼行數:32,代碼來源:stft.py

示例6: inverse

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import tiny [as 別名]
def inverse(self, magnitude, phase):
        """Call the inverse STFT (iSTFT), given magnitude and phase tensors produced 
        by the ```transform``` function.
        
        Arguments:
            magnitude {tensor} -- Magnitude of STFT with shape (num_batch, 
                num_frequencies, num_frames)
            phase {tensor} -- Phase of STFT with shape (num_batch, 
                num_frequencies, num_frames)
        
        Returns:
            inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
                shape (num_batch, num_samples)
        """
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            self.inverse_basis,
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.from_numpy(window_sum).to(inverse_transform.device)
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[..., self.pad_amount:]
        inverse_transform = inverse_transform[..., :self.num_samples]
        inverse_transform = inverse_transform.squeeze(1)

        return inverse_transform 
開發者ID:pseeth,項目名稱:torch-stft,代碼行數:44,代碼來源:stft.py


注:本文中的librosa.util.tiny方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。