本文整理匯總了Python中librosa.filters方法的典型用法代碼示例。如果您正苦於以下問題:Python librosa.filters方法的具體用法?Python librosa.filters怎麽用?Python librosa.filters使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類librosa
的用法示例。
在下文中一共展示了librosa.filters方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
n_fft = (hparams.num_freq - 1) * 2
return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels)
示例2: __init__
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def __init__(self, sample_rate, num_mels, num_freq, frame_length_ms, frame_shift_ms, preemphasis,
min_level_db, ref_level_db, griffin_lim_iters, power):
self.sr = sample_rate
self.n_mels = num_mels
self.n_fft = (num_freq - 1) * 2
self.hop_length = int(frame_shift_ms / 1000 * sample_rate)
self.win_length = int(frame_length_ms / 1000 * sample_rate)
self.preemph = preemphasis
self.min_level_db = min_level_db
self.ref_level_db = ref_level_db
self.GL_iter = griffin_lim_iters
self.mel_basis = librosa.filters.mel(self.sr, self.n_fft, n_mels=self.n_mels)
self.power = power
示例3: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
n_fft = (hparams.num_freq - 1) * 2
return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels)
示例4: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, hparams.fft_size, n_mels=hparams.num_mels,
fmin=hparams.fmin, fmax=hparams.fmax)
示例5: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis(hparams):
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels,
fmin=hparams.fmin, fmax=hparams.fmax)
示例6: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
n_fft = (config.num_freq - 1) * 2
return librosa.filters.mel(config.sample_rate, n_fft, n_mels=config.num_mels)
示例7: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis(hparams):
#assert hparams.fmax <= hparams.sample_rate // 2
#fmin: Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
#fmax: 7600, To be increased/reduced depending on data.
#return librosa.filters.mel(hparams.sample_rate, hparams.fft_size, n_mels=hparams.num_mels,fmin=hparams.fmin, fmax=hparams.fmax)
return librosa.filters.mel(hparams.sample_rate, hparams.fft_size, n_mels=hparams.num_mels) # fmin=0, fmax= sample_rate/2.0
示例8: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, n_fft,
fmin=hparams.fmin, fmax=hparams.fmax,
n_mels=hparams.num_mels)
示例9: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
n_fft = hparams.n_fft
return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels)
示例10: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
if hparams.fmax is not None:
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, hparams.fft_size,
fmin=hparams.fmin, fmax=hparams.fmax,
n_mels=hparams.num_mels)
示例11: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
n_fft = (hps.num_freq - 1) * 2
return librosa.filters.mel(hps.sample_rate, n_fft, n_mels=hps.num_mels)
示例12: _build_mel_basis
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def _build_mel_basis():
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, hparams.fft_size,
fmin=hparams.fmin, fmax=hparams.fmax,
n_mels=hparams.num_mels)
示例13: get_mel
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def get_mel(
log_mag_spec,
fs=22050,
n_fft=1024,
n_mels=80,
power=2.,
feature_normalize=False,
mean=0,
std=1,
mel_basis=None,
data_min=1e-5,
htk=True,
norm=None
):
"""
Method to get mel spectrograms from magnitude spectrograms
Args:
log_mag_spec (np.array): log of the magnitude spec
fs (int): sampling frequency in Hz
n_fft (int): size of fft window in samples
n_mels (int): number of mel features
power (float): power of the mag spectrogram
feature_normalize (bool): whether the mag spec was normalized
mean (float): normalization param of mag spec
std (float): normalization param of mag spec
mel_basis (np.array): optional pre-computed mel basis to save computational
time if passed. If not passed, it will call librosa to construct one
data_min (float): min clip value prior to taking the log.
htk (bool): whther to compute the mel spec with the htk or slaney algorithm
norm: Should be None for htk, and 1 for slaney
Returns:
np.array: mel_spec with shape [time, n_mels]
"""
if mel_basis is None:
mel_basis = librosa.filters.mel(
fs,
n_fft,
n_mels=n_mels,
htk=htk,
norm=norm
)
log_mag_spec = log_mag_spec * power
mag_spec = np.exp(log_mag_spec)
mel_spec = np.dot(mag_spec, mel_basis.T)
mel_spec = np.log(np.clip(mel_spec, a_min=data_min, a_max=None))
if feature_normalize:
mel_spec = normalize(mel_spec, mean, std)
return mel_spec
示例14: inverse_mel
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import filters [as 別名]
def inverse_mel(
log_mel_spec,
fs=22050,
n_fft=1024,
n_mels=80,
power=2.,
feature_normalize=False,
mean=0,
std=1,
mel_basis=None,
htk=True,
norm=None
):
"""
Reconstructs magnitude spectrogram from a mel spectrogram by multiplying it
with the transposed mel basis.
Args:
log_mel_spec (np.array): log of the mel spec
fs (int): sampling frequency in Hz
n_fft (int): size of fft window in samples
n_mels (int): number of mel features
power (float): power of the mag spectrogram that was used to generate the
mel spec
feature_normalize (bool): whether the mel spec was normalized
mean (float): normalization param of mel spec
std (float): normalization param of mel spec
mel_basis (np.array): optional pre-computed mel basis to save computational
time if passed. If not passed, it will call librosa to construct one
htk (bool): whther to compute the mel spec with the htk or slaney algorithm
norm: Should be None for htk, and 1 for slaney
Returns:
np.array: mag_spec with shape [time, n_fft/2 + 1]
"""
if mel_basis is None:
mel_basis = librosa.filters.mel(
fs,
n_fft,
n_mels=n_mels,
htk=htk,
norm=norm
)
if feature_normalize:
log_mel_spec = denormalize(log_mel_spec, mean, std)
mel_spec = np.exp(log_mel_spec)
mag_spec = np.dot(mel_spec, mel_basis)
mag_spec = np.power(mag_spec, 1. / power)
return mag_spec