當前位置: 首頁>>代碼示例>>Python>>正文


Python merge.Add方法代碼示例

本文整理匯總了Python中keras.layers.merge.Add方法的典型用法代碼示例。如果您正苦於以下問題:Python merge.Add方法的具體用法?Python merge.Add怎麽用?Python merge.Add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.merge的用法示例。


在下文中一共展示了merge.Add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_residual_block

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def _build_residual_block(args, x):
    cnn_filter_num = args['cnn_filter_num']
    cnn_filter_size = args['cnn_filter_size']
    l2_reg = args['l2_reg']
    
    in_x = x
    x = Conv2D(filters=cnn_filter_num, kernel_size=cnn_filter_size, padding="same",
                data_format="channels_first", kernel_regularizer=l2(l2_reg))(x)
    x = BatchNormalization(axis=1)(x)
    x = Activation("relu")(x)
    x = Conv2D(filters=cnn_filter_num, kernel_size=cnn_filter_size, padding="same",
                data_format="channels_first", kernel_regularizer=l2(l2_reg))(x)
    x = BatchNormalization(axis=1)(x)
    x = Add()([in_x, x])
    x = Activation("relu")(x)
    return x 
開發者ID:witchu,項目名稱:alphazero,代碼行數:18,代碼來源:keras_model.py

示例2: add_conv_layer

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def add_conv_layer(input_list, layer_name, nb_filters, kernel_size, padding, dropout_rate=0.1,
                   activation='relu', strides=1, attention_level=0, conv_option="normal", prev_conv_tensors=None):
    conv_layer = Convolution1D(filters=nb_filters, kernel_size=kernel_size, padding=padding,
                               activation=activation, strides=strides, name=layer_name)
    max_pooling_layer = GlobalMaxPooling1D()
    dropout_layer = Dropout(dropout_rate)
    output_list, conv_output_list = [], []
    for i in range(len(input_list)):
        input = input_list[i]
        conv_tensor = conv_layer(input)
        if conv_option == "ResNet":
            conv_tensor = Add()([conv_tensor, prev_conv_tensors[i][-1]])
        dropout_tensor = dropout_layer(conv_tensor)
        #conv_pooling_tensor = max_pooling_layer(conv_tensor)
        output_list.append(dropout_tensor)
        #conv_output_list.append(conv_pooling_tensor)
        conv_output_list.append(conv_tensor)
    return output_list, conv_output_list 
開發者ID:jinfengr,項目名稱:neural-tweet-search,代碼行數:20,代碼來源:attention_model.py

示例3: conv_block

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def conv_block(x0, scale):
    x = Conv2D(int(64*scale), (1, 1))(x0)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)

    x = Conv2D(int(64*scale), (3, 3), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)

    x = Conv2D(int(256*scale), (1, 1))(x)
    x = InstanceNormalization()(x)

    x1 = Conv2D(int(256*scale), (1, 1))(x0)
    x1 = InstanceNormalization()(x1)

    x = Add()([x, x1])
    x = LeakyReLU()(x)
    return x 
開發者ID:alecGraves,項目名稱:cyclegan_keras,代碼行數:20,代碼來源:models.py

示例4: residual_short

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def residual_short(prev_layer, level, pad=1, lvl=1, sub_lvl=1, modify_stride=False):
    prev_layer = Activation('relu')(prev_layer)
    block_1 = residual_conv(prev_layer, level,
                            pad=pad, lvl=lvl, sub_lvl=sub_lvl,
                            modify_stride=modify_stride)

    block_2 = short_convolution_branch(prev_layer, level,
                                       lvl=lvl, sub_lvl=sub_lvl,
                                       modify_stride=modify_stride)
    added = Add()([block_1, block_2])
    return added 
開發者ID:Vladkryvoruchko,項目名稱:PSPNet-Keras-tensorflow,代碼行數:13,代碼來源:layers_builder.py

示例5: residual_empty

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def residual_empty(prev_layer, level, pad=1, lvl=1, sub_lvl=1):
    prev_layer = Activation('relu')(prev_layer)

    block_1 = residual_conv(prev_layer, level, pad=pad,
                            lvl=lvl, sub_lvl=sub_lvl)
    block_2 = empty_branch(prev_layer)
    added = Add()([block_1, block_2])
    return added 
開發者ID:Vladkryvoruchko,項目名稱:PSPNet-Keras-tensorflow,代碼行數:10,代碼來源:layers_builder.py

示例6: residual_short

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def residual_short(prev_layer, level, pad=1, lvl=1, sub_lvl=1,
                   modify_stride=False):
    prev_layer = Activation('relu')(prev_layer)
    block_1 = residual_conv(prev_layer, level,
                            pad=pad, lvl=lvl, sub_lvl=sub_lvl,
                            modify_stride=modify_stride)

    block_2 = short_convolution_branch(prev_layer, level,
                                       lvl=lvl, sub_lvl=sub_lvl,
                                       modify_stride=modify_stride)
    added = Add()([block_1, block_2])
    return added 
開發者ID:divamgupta,項目名稱:image-segmentation-keras,代碼行數:14,代碼來源:_pspnet_2.py

示例7: _build_residual_block

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def _build_residual_block(self, x):
        mc = self.config.model
        in_x = x
        x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same",
                   data_format="channels_first", kernel_regularizer=l2(mc.l2_reg))(x)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)
        x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same",
                   data_format="channels_first", kernel_regularizer=l2(mc.l2_reg))(x)
        x = BatchNormalization(axis=1)(x)
        x = Add()([in_x, x])
        x = Activation("relu")(x)
        return x 
開發者ID:Zeta36,項目名稱:connect4-alpha-zero,代碼行數:15,代碼來源:model_connect4.py

示例8: add_images_with_tiled_vector_layer

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def add_images_with_tiled_vector_layer(images, vector, image_shape=None, vector_shape=None):
    """Tile a vector as if it were channels onto every pixel of an image.

    This version is designed to be used as layers within a Keras model.

    # Params
       images: a list of images to combine, must have equal dimensions
       vector: the 1D vector to tile onto every pixel
       image_shape: Tuple with 3 entries defining the shape (batch, height, width)
           images should be expected to have, do not specify the number
           of batches.
       vector_shape: Tuple with 3 entries defining the shape (batch, height, width)
           images should be expected to have, do not specify the number
           of batches.
    """
    with K.name_scope('add_images_with_tiled_vector_layer'):
        if not isinstance(images, list):
            images = [images]
        if vector_shape is None:
            # check if K.shape, K.int_shape, or vector.get_shape().as_list()[1:] is better
            # https://github.com/fchollet/keras/issues/5211
            vector_shape = K.int_shape(vector)[1:]
        if image_shape is None:
            # check if K.shape, K.int_shape, or image.get_shape().as_list()[1:] is better
            # https://github.com/fchollet/keras/issues/5211
            image_shape = K.int_shape(images[0])[1:]
        vector = Reshape([1, 1, vector_shape[-1]])(vector)
        tile_shape = (int(1), int(image_shape[0]), int(image_shape[1]), int(1))
        tiled_vector = Lambda(lambda x: K.tile(x, tile_shape))(vector)
        x = Add()([] + images + [tiled_vector])
    return x 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:33,代碼來源:hypertree_model.py

示例9: TileOnto

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def TileOnto(x,z,zlen,xsize,add=False):
    z = Reshape([1,1,zlen])(z)
    tile_shape = (int(1), int(xsize[0]), int(xsize[1]), 1)
    z = Lambda(lambda x: K.tile(x, tile_shape))(z)
    if not add:
        x = Concatenate(axis=-1)([x,z])
    else:
        x = Add()([x,z])
    return x 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:11,代碼來源:planner.py

示例10: DenseHelper

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def DenseHelper(x, dense_size, dropout_rate, repeat):
    '''
    Add a repeated number of dense layers of the same size.
    '''
    for i in range(repeat):
        if i < repeat - 1:
            dr = 0.
        else:
            dr = dropout_rate
        AddDense(x, dense_size, "relu", dr)
    return x 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:13,代碼來源:planner.py

示例11: GetHuskyActorModel

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def GetHuskyActorModel(x, num_options, pose_size,
        dropout_rate=0.5, batchnorm=True):
    '''
    Make an "actor" network that takes in an encoded image and an "option"
    label and produces the next command to execute.
    '''
    xin = Input([int(d) for d in x.shape[1:]], name="actor_h_in")
    x0in = Input([int(d) for d in x.shape[1:]], name="actor_h0_in")

    pose_in = Input((pose_size,), name="actor_pose_in")
    option_in = Input((num_options,), name="actor_o_in")
    x = xin
    x0 = x0in
    dr, bn = dropout_rate, False
    use_lrelu = False

    x = Concatenate(axis=-1)([x, x0])
    x = AddConv2D(x, 32, [3,3], 1, dr, "same", lrelu=use_lrelu, bn=bn)

    # Add arm, gripper
    y = pose_in
    y = AddDense(y, 32, "relu", 0., output=True, constraint=3)
    x = TileOnto(x, y, 32, (8,8), add=False)
    x = AddConv2D(x, 64, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)

    # Add arm, gripper
    y2 = AddDense(option_in, 64, "relu", 0., output=True, constraint=3)
    x = TileOnto(x, y2, 64, (6,6), add=False)
    x = AddConv2D(x, 128, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)
    x = AddConv2D(x, 64, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)

    x = Flatten()(x)
    x = AddDense(x, 512, "relu", dr, output=True, bn=bn)
    x = AddDense(x, 512, "relu", dr, output=True, bn=bn)    # Same setup as the state decoders


    pose = AddDense(x, pose_size, "linear", 0., output=True)
    actor = Model([x0in, xin, option_in, pose_in], [pose], name="actor")
    return actor 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:41,代碼來源:husky.py

示例12: GetHuskyPoseModel

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def GetHuskyPoseModel(x, num_options, pose_size,
        dropout_rate=0.5, batchnorm=True):
    '''
    Make an "actor" network that takes in an encoded image and an "option"
    label and produces the next command to execute.
    '''
    xin = Input([int(d) for d in x.shape[1:]], name="pose_h_in")
    x0in = Input([int(d) for d in x.shape[1:]], name="pose_h0_in")

    pose_in = Input((pose_size,), name="pose_pose_in")
    option_in = Input((num_options,), name="pose_o_in")
    x = xin
    x0 = x0in
    dr, bn = dropout_rate, False
    use_lrelu = False

    x = Concatenate(axis=-1)([x, x0])
    x = AddConv2D(x, 32, [3,3], 1, dr, "same", lrelu=use_lrelu, bn=bn)

    # Add arm, gripper
    y = pose_in
    y = AddDense(y, 32, "relu", 0., output=True, constraint=3)
    x = TileOnto(x, y, 32, (8,8), add=False)
    x = AddConv2D(x, 64, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)

    # Add arm, gripper
    y2 = AddDense(option_in, 64, "relu", 0., output=True, constraint=3)
    x = TileOnto(x, y2, 64, (6,6), add=False)
    x = AddConv2D(x, 128, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)
    x = AddConv2D(x, 64, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)

    x = Flatten()(x)
    x = AddDense(x, 512, "relu", dr, output=True, bn=bn)
    x = AddDense(x, 512, "relu", dr, output=True, bn=bn)    # Same setup as the state decoders


    pose = AddDense(x, pose_size, "linear", 0., output=True)
    pose = Model([x0in, xin, option_in, pose_in], [pose], name="pose")
    return pose 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:41,代碼來源:husky.py

示例13: GetPoseModel

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def GetPoseModel(x, num_options, arm_size, gripper_size,
        dropout_rate=0.5, batchnorm=True):
    '''
    Make an "actor" network that takes in an encoded image and an "option"
    label and produces the next command to execute.
    '''
    img_shape = [int(d) for d in x.shape[1:]]
    img_in = Input(img_shape,name="policy_img_in")
    img0_in = Input(img_shape,name="policy_img0_in")
    arm = Input((arm_size,), name="ee_in")
    gripper = Input((gripper_size,), name="gripper_in")
    option_in = Input((48,), name="actor_o_in")

    ins = [img0_in, img_in, option_in, arm, gripper]
    x0, x = img0_in, img_in
    dr, bn = dropout_rate, False
    use_lrelu = False

    x = Concatenate(axis=-1)([x, x0])
    x = AddConv2D(x, 32, [3,3], 1, dr, "same", lrelu=use_lrelu, bn=bn)

    # Add arm, gripper
    y = Concatenate()([arm, gripper])
    y = AddDense(y, 32, "relu", 0., output=True, constraint=3)
    x = TileOnto(x, y, 32, (8,8), add=False)
    x = AddConv2D(x, 64, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)

    # Add arm, gripper
    y2 = AddDense(option_in, 64, "relu", 0., output=True, constraint=3)
    x = TileOnto(x, y2, 64, (6,6), add=False)
    x = AddConv2D(x, 128, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)
    x = AddConv2D(x, 64, [3,3], 1, dr, "valid", lrelu=use_lrelu, bn=bn)

    x = Flatten()(x)
    x = AddDense(x, 512, "relu", 0., output=True, bn=False)
    x = AddDense(x, 512, "relu", 0., output=True, bn=False)    # Same setup as the state decoders
    arm = AddDense(x, arm_size, "linear", 0., output=True)
    gripper = AddDense(x, gripper_size, "sigmoid", 0., output=True)
    actor = Model(ins, [arm, gripper], name="pose")
    return actor 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:42,代碼來源:multi.py

示例14: res_block

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def res_block(input_tensor, filters, kernel_size=(3, 3), strides=(1, 1), use_dropout=False):
    """實例化Keras Resnet塊。
    
    Arguments:
        input_tensor {[type]} -- 輸入張量
        filters {[type]} -- filters
    
    Keyword Arguments:
        kernel_size {tuple} -- [description] (default: {(3,3)})
        strides {tuple} -- [description] (default: {(1,1)})
        use_dropout {bool} -- [description] (default: {False})
    """
    x = ReflectionPadding2D((1, 1))(input_tensor)
    x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)

    if use_dropout:
        x=Dropout(0.5)(x)
    
    x = ReflectionPadding2D((1, 1))(x)
    x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides)(x)
    x = BatchNormalization()(x)

    merged = Add()([input_tensor, x])
    return merged 
開發者ID:jarvisqi,項目名稱:deep_learning,代碼行數:28,代碼來源:layer_utils.py

示例15: resnet_block

# 需要導入模塊: from keras.layers import merge [as 別名]
# 或者: from keras.layers.merge import Add [as 別名]
def resnet_block(n_filter, kernel_size=(3,3), pool=(1,1), n_conv_per_block=2,
                 batch_norm=False, kernel_initializer='he_normal', activation='relu'):

    n_conv_per_block >= 2 or _raise(ValueError('required: n_conv_per_block >= 2'))
    len(pool) == len(kernel_size) or _raise(ValueError('kernel and pool sizes must match.'))
    n_dim = len(kernel_size)
    n_dim in (2,3) or _raise(ValueError('resnet_block only 2d or 3d.'))

    conv_layer = Conv2D if n_dim == 2 else Conv3D
    conv_kwargs = dict (
        padding            = 'same',
        use_bias           = not batch_norm,
        kernel_initializer = kernel_initializer,
    )
    channel_axis = -1 if backend_channels_last() else 1

    def f(inp):
        x = conv_layer(n_filter, kernel_size, strides=pool, **conv_kwargs)(inp)
        if batch_norm:
            x = BatchNormalization(axis=channel_axis)(x)
        x = Activation(activation)(x)

        for _ in range(n_conv_per_block-2):
            x = conv_layer(n_filter, kernel_size, **conv_kwargs)(x)
            if batch_norm:
                x = BatchNormalization(axis=channel_axis)(x)
            x = Activation(activation)(x)

        x = conv_layer(n_filter, kernel_size, **conv_kwargs)(x)
        if batch_norm:
            x = BatchNormalization(axis=channel_axis)(x)

        if any(p!=1 for p in pool) or n_filter != K.int_shape(inp)[-1]:
            inp = conv_layer(n_filter, (1,)*n_dim, strides=pool, **conv_kwargs)(inp)

        x = Add()([inp, x])
        x = Activation(activation)(x)
        return x

    return f 
開發者ID:CSBDeep,項目名稱:CSBDeep,代碼行數:42,代碼來源:blocks.py


注:本文中的keras.layers.merge.Add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。