當前位置: 首頁>>代碼示例>>Python>>正文


Python embeddings.Embedding方法代碼示例

本文整理匯總了Python中keras.layers.embeddings.Embedding方法的典型用法代碼示例。如果您正苦於以下問題:Python embeddings.Embedding方法的具體用法?Python embeddings.Embedding怎麽用?Python embeddings.Embedding使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.embeddings的用法示例。


在下文中一共展示了embeddings.Embedding方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: textual_embedding

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def textual_embedding(self, language_model, mask_zero):
        """
        Note:
        * mask_zero only makes sense if embedding is learnt
        """
        if self._config.textual_embedding_dim > 0:
            print('Textual Embedding is on')
            language_model.add(Embedding(
                self._config.input_dim, 
                self._config.textual_embedding_dim, 
                mask_zero=mask_zero))
        else:
            print('Textual Embedding is off')
            language_model.add(Reshape(
                input_shape=(self._config.max_input_time_steps, self._config.input_dim),
                dims=(self._config.max_input_time_steps, self._config.input_dim)))
            if mask_zero:
                language_model.add(Masking(0))
        return language_model 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:21,代碼來源:model_zoo.py

示例2: textual_embedding_fixed_length

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def textual_embedding_fixed_length(self, language_model, mask_zero):
        """
        In contrast to textual_embedding, it produces a fixed length output.
        """
        if self._config.textual_embedding_dim > 0:
            print('Textual Embedding with fixed length is on')
            language_model.add(Embedding(
                self._config.input_dim, 
                self._config.textual_embedding_dim,
                input_length=self._config.max_input_time_steps,
                mask_zero=mask_zero))
        else:
            print('Textual Embedding with fixed length is off')
            language_model.add(Reshape(
                input_shape=(self._config.max_input_time_steps, self._config.input_dim),
                dims=(self._config.max_input_time_steps, self._config.input_dim)))
            if mask_zero:
                language_model.add(Masking(0))
        return language_model 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:21,代碼來源:model_zoo.py

示例3: create

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def create(self):

        assert self._config.textual_embedding_dim == 0, \
                'Embedding cannot be learnt but must be fixed'

        language_forward = Sequential()
        language_forward.add(self._config.recurrent_encoder(
            self._config.hidden_state_dim, return_sequences=False,
            input_shape=(self._config.max_input_time_steps, self._config.input_dim)))
        self.language_forward = language_forward

        language_backward = Sequential()
        language_backward.add(self._config.recurrent_encoder(
            self._config.hidden_state_dim, return_sequences=False,
            go_backwards=True,
            input_shape=(self._config.max_input_time_steps, self._config.input_dim)))
        self.language_backward = language_backward

        self.add(Merge([language_forward, language_backward]))
        self.deep_mlp()
        self.add(Dense(self._config.output_dim))
        self.add(Activation('softmax')) 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:24,代碼來源:model_zoo.py

示例4: gen_model

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def gen_model(vocab_size=100, embedding_size=128, maxlen=100, output_size=6, hidden_layer_size=100, num_hidden_layers = 1, RNN_LAYER_TYPE="LSTM"):
    RNN_CLASS = LSTM
    if RNN_LAYER_TYPE == "GRU":
        RNN_CLASS = GRU
    logger.info("Parameters: vocab_size = %s, embedding_size = %s, maxlen = %s, output_size = %s, hidden_layer_size = %s, " %\
            (vocab_size, embedding_size, maxlen, output_size, hidden_layer_size))
    logger.info("Building Model")
    model = Sequential()
    logger.info("Init Model with vocab_size = %s, embedding_size = %s, maxlen = %s" % (vocab_size, embedding_size, maxlen))
    model.add(Embedding(vocab_size, embedding_size, input_length=maxlen))
    logger.info("Added Embedding Layer")
    model.add(Dropout(0.5))
    logger.info("Added Dropout Layer")
    for i in xrange(num_hidden_layers):
        model.add(RNN_CLASS(output_dim=hidden_layer_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True))
        logger.info("Added %s Layer" % RNN_LAYER_TYPE)
        model.add(Dropout(0.5))
        logger.info("Added Dropout Layer")
    model.add(RNN_CLASS(output_dim=output_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True))
    logger.info("Added %s Layer" % RNN_LAYER_TYPE)
    model.add(Dropout(0.5))
    logger.info("Added Dropout Layer")
    model.add(TimeDistributedDense(output_size, activation="softmax"))
    logger.info("Added Dropout Layer")
    logger.info("Created model with following config:\n%s" % json.dumps(model.get_config(), indent=4))
    logger.info("Compiling model with optimizer %s" % optimizer)
    start_time = time.time()
    model.compile(loss='categorical_crossentropy', optimizer=optimizer)
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f seconds." % total_time)
    return model 
開發者ID:napsternxg,項目名稱:DeepSequenceClassification,代碼行數:33,代碼來源:model.py

示例5: test_embedding

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def test_embedding():
    layer_test(Embedding,
               kwargs={'output_dim': 4, 'input_dim': 10, 'input_length': 2},
               input_shape=(3, 2),
               input_dtype='int32',
               expected_output_dtype=K.floatx())
    layer_test(Embedding,
               kwargs={'output_dim': 4, 'input_dim': 10, 'mask_zero': True},
               input_shape=(3, 2),
               input_dtype='int32',
               expected_output_dtype=K.floatx())
    layer_test(Embedding,
               kwargs={'output_dim': 4, 'input_dim': 10, 'mask_zero': True},
               input_shape=(3, 2, 5),
               input_dtype='int32',
               expected_output_dtype=K.floatx())
    layer_test(Embedding,
               kwargs={'output_dim': 4, 'input_dim': 10, 'mask_zero': True, 'input_length': (None, 5)},
               input_shape=(3, 2, 5),
               input_dtype='int32',
               expected_output_dtype=K.floatx()) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:embeddings_test.py

示例6: test_masking_correctness

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def test_masking_correctness(layer_class):
    # Check masking: output with left padding and right padding
    # should be the same.
    model = Sequential()
    model.add(embeddings.Embedding(embedding_num, embedding_dim,
                                   mask_zero=True,
                                   input_length=timesteps,
                                   batch_input_shape=(num_samples, timesteps)))
    layer = layer_class(units, return_sequences=False)
    model.add(layer)
    model.compile(optimizer='sgd', loss='mse')

    left_padded_input = np.ones((num_samples, timesteps))
    left_padded_input[0, :1] = 0
    left_padded_input[1, :2] = 0
    out6 = model.predict(left_padded_input)

    right_padded_input = np.ones((num_samples, timesteps))
    right_padded_input[0, -1:] = 0
    right_padded_input[1, -2:] = 0
    out7 = model.predict(right_padded_input)

    assert_allclose(out7, out6, atol=1e-5) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:25,代碼來源:recurrent_test.py

示例7: build_embedding_layer

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def build_embedding_layer(word2index, emb_type='glove', embedding_dim=300, max_len=40, trainable=True):
    vocab_size = len(word2index) + 1
    if 'glove' in emb_type:
        word2vec_map = utils.load_vectors(filename='glove.6B.%dd.txt' % embedding_dim)
        emb_layer = pretrained_embedding_layer(word2vec_map, word2index, embedding_dim, vocab_size, trainable=trainable)
    elif 'emoji' in emb_type:
        emoji2vec_map = utils.load_vectors(filename='emoji_embeddings_%dd.txt' % embedding_dim)
        emb_layer = pretrained_embedding_layer(emoji2vec_map, word2index, embedding_dim, vocab_size, trainable=trainable)
    elif 'random' in emb_type:
        words = word2index.keys()
        random2vec_map = utils.build_random_word2vec(words, embedding_dim=embedding_dim, variance=1)
        emb_layer = pretrained_embedding_layer(random2vec_map, word2index, embedding_dim, vocab_size, trainable=trainable)
    else:
        emb_layer = Embedding(vocab_size, embedding_dim, input_length=max_len, trainable=trainable)
        emb_layer.build((None,))
    return emb_layer 
開發者ID:MirunaPislar,項目名稱:Sarcasm-Detection,代碼行數:18,代碼來源:dl_models.py

示例8: create

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def create(inputtokens, vocabsize, units=16, dropout=0, embedding=32):

        input_ = Input(shape=(inputtokens,), dtype='int32')

        # Embedding layer
        net = Embedding(input_dim=vocabsize, output_dim=embedding, input_length=inputtokens)(input_)
        net = Dropout(dropout)(net)

        # Bidirectional LSTM layer
        net = BatchNormalization()(net)
        net = Bidirectional(CuDNNLSTM(units))(net)
        net = Dropout(dropout)(net)

        # Output layer
        net = Dense(vocabsize, activation='softmax')(net)
        model = Model(inputs=input_, outputs=net)

        # Make data-parallel
        ngpus = len(get_available_gpus())
        if ngpus > 1:
            model = make_parallel(model, ngpus)

        return model 
開發者ID:albarji,項目名稱:neurowriter,代碼行數:25,代碼來源:models.py

示例9: setUp

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def setUp(self):
        self.embs = np.array([
            [0, 0, 0],
            [1, 10, 100],
            [2, 20, 200],
            [3, 30, 300],
            [4, 40, 400],
            [5, 50, 500],
            [6, 60, 600],
            [7, 70, 700],
            [8, 80, 800],
            [9, 90, 900]],
            dtype='float32')
        self.emb_dim = self.embs.shape[1]
        self.token_emb = Embedding(
            input_dim=self.embs.shape[0],
            output_dim=self.emb_dim,
            weights=[self.embs],
            mask_zero=False, # Reshape layer does not support masking.
            trainable=True,
            name='token_emb')
        self.gather_layer = Lambda(gather3, output_shape=gather_output_shape3) 
開發者ID:mynlp,項目名稱:ccg2lambda,代碼行數:24,代碼來源:gather_test.py

示例10: visual_embedding

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def visual_embedding(self, visual_model, input_dimensionality):
        if self._config.visual_embedding_dim > 0:
            print('Visual Embedding is on')
            visual_model.add(Dense(
                self._config.visual_embedding_dim, 
                input_shape=(input_dimensionality,)))
        return visual_model 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:9,代碼來源:model_zoo.py

示例11: make_embedding

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def make_embedding(vocab_size, wv_size, init=None, fixed=False, constraint=ConstNorm(3.0, True), **kwargs):
    '''
    Takes parameters and makes a word vector embedding

    Args:
    ------
        vocab_size: integer -- how many words in your vocabulary

        wv_size: how big do you want the word vectors

        init: initial word vectors -- defaults to None. If you specify initial word vectors, 
                needs to be an np.array of shape (vocab_size, wv_size)

        fixed: boolean -- do you want the word vectors fixed or not?

    Returns:
    ---------

        a Keras Embedding layer
    '''
    if (init is not None) and len(init.shape) == 2:
        emb = Embedding(vocab_size, wv_size, weights=[init], W_constraint=constraint) # keras needs a list for initializations
    else:
        emb = Embedding(vocab_size, wv_size, W_constraint=constraint) # keras needs a list for initializations
    if fixed:
        emb.trainable = False
        # emb.params = []
    return emb 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:30,代碼來源:embeddings.py

示例12: test_unitnorm_constraint

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def test_unitnorm_constraint(self):
        lookup = Sequential()
        lookup.add(Embedding(3, 2, weights=[self.W1], W_constraint=unitnorm()))
        lookup.add(Flatten())
        lookup.add(Dense(2, 1))
        lookup.add(Activation('sigmoid'))
        lookup.compile(loss='binary_crossentropy', optimizer='sgd', class_mode='binary')
        lookup.train_on_batch(self.X1, np.array([[1], [0]], dtype='int32'))
        norm = np.linalg.norm(lookup.params[0].get_value(), axis=1)
        self.assertTrue(np.allclose(norm, np.ones_like(norm).astype('float32'))) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:12,代碼來源:test_embeddings.py

示例13: get_model

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def get_model(self, num_classes, activation='sigmoid'):
        max_len = opt.max_len
        voca_size = opt.unigram_hash_size + 1

        with tf.device('/gpu:0'):
            embd = Embedding(voca_size,
                             opt.embd_size,
                             name='uni_embd')

            t_uni = Input((max_len,), name="input_1")
            t_uni_embd = embd(t_uni)  # token

            w_uni = Input((max_len,), name="input_2")
            w_uni_mat = Reshape((max_len, 1))(w_uni)  # weight

            uni_embd_mat = dot([t_uni_embd, w_uni_mat], axes=1)
            uni_embd = Reshape((opt.embd_size, ))(uni_embd_mat)

            embd_out = Dropout(rate=0.5)(uni_embd)
            relu = Activation('relu', name='relu1')(embd_out)
            outputs = Dense(num_classes, activation=activation)(relu)
            model = Model(inputs=[t_uni, w_uni], outputs=outputs)
            optm = keras.optimizers.Nadam(opt.lr)
            model.compile(loss='binary_crossentropy',
                        optimizer=optm,
                        metrics=[top1_acc])
            model.summary(print_fn=lambda x: self.logger.info(x))
        return model 
開發者ID:kakao-arena,項目名稱:shopping-classification,代碼行數:30,代碼來源:network.py

示例14: build_MLP_model

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def build_MLP_model(self):
        NUM_WINDOW_FEATURES = 2
        left_token_input = Input(name='left_token_input', shape=(NUM_WINDOW_FEATURES,))
        left_token_embedding = Embedding(output_dim=self.preprocessor.embedding_dims, input_dim=self.preprocessor.max_features,
                                        input_length=NUM_WINDOW_FEATURES)(left_token_input)
        left_token_embedding = Flatten(name="left_token_embedding")(left_token_embedding)

        n_PoS_tags = len(self.tag_names)
        left_PoS_input = Input(name='left_PoS_input', shape=(n_PoS_tags,))
        #target_token_input = Input(name='target_token_input', shape=(1,))

        right_token_input = Input(name='right_token_input', shape=(NUM_WINDOW_FEATURES,))
        right_token_embedding = Embedding(output_dim=self.preprocessor.embedding_dims, input_dim=self.preprocessor.max_features,
                                          input_length=NUM_WINDOW_FEATURES)(right_token_input)
        right_PoS_input = Input(name='right_PoS_input', shape=(n_PoS_tags,))

        right_token_embedding = Flatten(name="right_token_embedding")(right_token_embedding)

        other_features_input = Input(name='other_feature_inputs', shape=(4,))

        x = merge([left_token_embedding, #target_token_input,
                    right_token_embedding,
                    left_PoS_input, right_PoS_input, other_features_input],
                    mode='concat', concat_axis=1)
        x = Dense(128, name="hidden1", activation='relu')(x)
        x = Dropout(.2)(x)
        x = Dense(64, name="hidden2", activation='relu')(x)

        output = Dense(1, name="prediction", activation='sigmoid')(x)

        self.model = Model([left_token_input, left_PoS_input, #target_token_input,
                            right_token_input, right_PoS_input, other_features_input],
                           output=[output])

        self.model.compile(optimizer="adam", loss="binary_crossentropy") 
開發者ID:ijmarshall,項目名稱:robotreviewer,代碼行數:37,代碼來源:sample_size_NN.py

示例15: gen_model_brnn

# 需要導入模塊: from keras.layers import embeddings [as 別名]
# 或者: from keras.layers.embeddings import Embedding [as 別名]
def gen_model_brnn(vocab_size=100, embedding_size=128, maxlen=100, output_size=6, hidden_layer_size=100, num_hidden_layers = 1, RNN_LAYER_TYPE="LSTM"):
    RNN_CLASS = LSTM
    if RNN_LAYER_TYPE == "GRU":
        RNN_CLASS = GRU
    logger.info("Parameters: vocab_size = %s, embedding_size = %s, maxlen = %s, output_size = %s, hidden_layer_size = %s, " %\
            (vocab_size, embedding_size, maxlen, output_size, hidden_layer_size))
    logger.info("Building Graph model for Bidirectional RNN")
    model = Graph()
    model.add_input(name='input', input_shape=(maxlen,), dtype=int)
    logger.info("Added Input node")
    logger.info("Init Model with vocab_size = %s, embedding_size = %s, maxlen = %s" % (vocab_size, embedding_size, maxlen))
    model.add_node(Embedding(vocab_size, embedding_size, input_length=maxlen), name='embedding', input='input')
    logger.info("Added Embedding node")
    model.add_node(Dropout(0.5), name="dropout_0", input="embedding")
    logger.info("Added Dropout Node")
    for i in xrange(num_hidden_layers):
        last_dropout_name = "dropout_%s" % i
        forward_name, backward_name, dropout_name = ["%s_%s" % (k, i + 1) for k in ["forward", "backward", "dropout"]]
        model.add_node(RNN_CLASS(output_dim=hidden_layer_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True), name=forward_name, input=last_dropout_name)
        logger.info("Added %s forward node[%s]" % (RNN_LAYER_TYPE, i+1))
        model.add_node(RNN_CLASS(output_dim=hidden_layer_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True, go_backwards=True), name=backward_name, input=last_dropout_name)
        logger.info("Added %s backward node[%s]" % (RNN_LAYER_TYPE, i+1))
        model.add_node(Dropout(0.5), name=dropout_name, inputs=[forward_name, backward_name])
        logger.info("Added Dropout node[%s]" % (i+1))
    model.add_node(TimeDistributedDense(output_size, activation="softmax"), name="tdd", input=dropout_name)
    logger.info("Added TimeDistributedDense node")
    model.add_output(name="output", input="tdd")
    logger.info("Added Output node")
    logger.info("Created model with following config:\n%s" % model.get_config())
    logger.info("Compiling model with optimizer %s" % optimizer)
    start_time = time.time()
    model.compile(optimizer, {"output": 'categorical_crossentropy'})
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f seconds." % total_time)
    return model 
開發者ID:napsternxg,項目名稱:DeepSequenceClassification,代碼行數:37,代碼來源:model.py


注:本文中的keras.layers.embeddings.Embedding方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。