本文整理匯總了Python中keras.callbacks.Callback方法的典型用法代碼示例。如果您正苦於以下問題:Python callbacks.Callback方法的具體用法?Python callbacks.Callback怎麽用?Python callbacks.Callback使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.callbacks
的用法示例。
在下文中一共展示了callbacks.Callback方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, filepath, epoch_interval, verbose=0):
"""
In:
filepath - formattable filepath; possibilities:
* weights.{epoch:02d}
* weights.{era:02d}
epoch_interval -
number of epochs that must be passed from the previous saving
verbose - if nonzero then print out information on stdout;
by default 0
"""
super(KerasCallback, self).__init__()
self.filepath = filepath
self.epoch_interval = epoch_interval
self.verbose = verbose
self.era = 0
示例2: process_item_worker_triplet
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def process_item_worker_triplet(worker_id, lock, shared_mem_X, shared_mem_y, jobs, results):
# make sure augmentations are different for each worker
np.random.seed()
random.seed()
while True:
items, augs, training, predict = jobs.get()
img_p1, one_hot_class_idx_p1, item_p1 = process_item(items[0], augs[0], training, predict)
img_p2, one_hot_class_idx_p2, item_p2 = process_item(items[1], augs[1], training, predict)
img_n1, one_hot_class_idx_n1, item_n1 = process_item(items[2], augs[2], training, predict)
is_good_item = False
if (one_hot_class_idx_p1 is not None) and (one_hot_class_idx_p2 is not None) and (one_hot_class_idx_n1 is not None):
lock.acquire()
shared_mem_X[worker_id,...,0] = img_p1
shared_mem_X[worker_id,...,1] = img_p2
shared_mem_X[worker_id,...,2] = img_n1
is_good_item = True
results.put((worker_id, is_good_item, (item_p1, item_p2, item_n1)))
# Callback to monitor accuracy on a per-batch basis
示例3: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, filepath, validation_data=(), interval=1, mymil=False):
super(Callback, self).__init__()
self.interval = interval
self.auc = 0
self.X_val, self.y_val = validation_data
self.filepath = filepath
self.mymil = mymil
示例4: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, patience=float(50000), division_cst=10.0, epsilon=1e-03, verbose=1, epoch_checkpoints={41, 61}):
super(Callback, self).__init__()
self.patience = patience
self.checkpoints = epoch_checkpoints
self.wait = 0
self.previous_score = 0.
self.division_cst = division_cst
self.epsilon = epsilon
self.verbose = verbose
self.iterations = 0
示例5: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, base_lr = 0.01, max_epoch = 150, power=0.9, verbose=1):
super(Callback, self).__init__()
self.max_epoch = max_epoch
self.power = power
self.verbose = verbose
self.base_lr = base_lr
示例6: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, validation_generate, steps_per_epoch):
super(Callback, self).__init__()
self.validation_generate = validation_generate
self.steps_per_epoch = steps_per_epoch
示例7: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, monitor='val_acc', mode='max', value=0.92, verbose=0):
super(Callback, self).__init__()
self.monitor = monitor
self.value = value
self.verbose = verbose
示例8: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, monitor='val_loss', value=0.1, verbose=0):
super(Callback, self).__init__()
self.monitor = monitor
self.value = value
self.verbose = verbose
開發者ID:nlinc1905,項目名稱:Convolutional-Autoencoder-Music-Similarity,代碼行數:7,代碼來源:03_autoencoding_and_tsne.py
示例9: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, monitor='acc', threshold=0.98, verbose=0):
super(Callback, self).__init__()
self.monitor = monitor
self.threshold = threshold
self.verbose = verbose
self.improved = 0
示例10: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, valid_toks, valid_y, X_valid, padlen, idx2label, pred_dir='./predictions'):
super(Callback, self).__init__()
self.valid_toks = valid_toks
self.valid_y = valid_y
self.X_valid = X_valid
self.padlen = padlen
assert X_valid.shape[0] == padlen * len(valid_toks)
self.window = X_valid.shape[1]
self.idx2label = idx2label
self.pred_dir = pred_dir
try:
os.makedirs(pred_dir)
except:
pass
示例11: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, output_dir, num_identities, batch_size=32, use_yale=False,
use_jaffe=False):
"""
Constructor for a GenerateIntermediate object.
Args:
output_dir (str): Directory to save intermediate results in.
num_identities (int): Number of identities in the training set.
Args: (optional)
batch_size (int): Batch size to use when generating images.
"""
super(Callback, self).__init__()
self.output_dir = output_dir
self.num_identities = num_identities
self.batch_size = batch_size
self.use_yale = use_yale
self.use_jaffe = use_jaffe
self.parameters = dict()
# Sweep through identities
self.parameters['identity'] = np.eye(num_identities)
if use_yale:
# Use pose 0, lighting at 0deg azimuth and elevation
self.parameters['pose'] = np.zeros((num_identities, NUM_YALE_POSES))
self.parameters['lighting'] = np.zeros((num_identities, 4))
for i in range(0, num_identities):
self.parameters['pose'][i,0] = 0
self.parameters['lighting'][i,1] = 1
self.parameters['lighting'][i,3] = 1
else:
# Make all have neutral expressions, front-facing
self.parameters['emotion'] = np.empty((num_identities, Emotion.length()))
self.parameters['orientation'] = np.zeros((num_identities, 2))
for i in range(0, num_identities):
self.parameters['emotion'][i,:] = Emotion.neutral
self.parameters['orientation'][i,1] = 1
示例12: reset_accuracy
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def reset_accuracy(self, group=-1, save = False):
self.accuracy_reached = False
self.last_accuracies = np.zeros(AccuracyReset.N_BATCHES)
self.last_accuracies_i = 0
if group != -1 and save:
self.model.save(
self.filepath.format(group= group, epoch= self.epoch + 1),
overwrite=True)
return
# Callback to monitor accuracy on a per-batch basis
示例13: create_callbacks
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def create_callbacks(self, callback: Callable[[], None], tensor_board_log_directory: Path, net_directory: Path,
callback_step: int = 1, save_step: int = 1) -> List[Callback]:
class CustomCallback(Callback):
def on_epoch_end(self_callback, epoch, logs=()):
if epoch % callback_step == 0:
callback()
if epoch % save_step == 0 and epoch > 0:
mkdir(net_directory)
self.predictive_net.save_weights(str(net_directory / self.model_file_name(epoch)))
tensorboard_if_running_tensorflow = [TensorBoard(
log_dir=str(tensor_board_log_directory), write_images=True)] if backend.backend() == 'tensorflow' else []
return tensorboard_if_running_tensorflow + [CustomCallback()]
示例14: __init__
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def __init__(self, validation_data=(), interval=10):
super(Callback, self).__init__()
self.interval = interval
self.X_val, self.y_val = validation_data
示例15: set_dimensions
# 需要導入模塊: from keras import callbacks [as 別名]
# 或者: from keras.callbacks import Callback [as 別名]
def set_dimensions(self):
"""Locate given hyperparameters that are `space` choice declarations and add them to
:attr:`dimensions`"""
all_dimension_choices = []
#################### Remap Extra Objects ####################
if self.module_name == "keras":
from keras.initializers import Initializer as KerasInitializer
from keras.callbacks import Callback as KerasCB
self.init_iter_attrs.append(lambda _p, _k, _v: isinstance(_v, KerasInitializer))
self.extra_iter_attrs.append(lambda _p, _k, _v: isinstance(_v, KerasCB))
#################### Collect Choice Dimensions ####################
init_dim_choices = get_choice_dimensions(self.model_init_params, self.init_iter_attrs)
extra_dim_choices = get_choice_dimensions(self.model_extra_params, self.extra_iter_attrs)
fe_dim_choices = get_choice_dimensions(self.feature_engineer, self.fe_iter_attrs)
for (path, choice) in init_dim_choices:
choice._name = ("model_init_params",) + path
all_dimension_choices.append(choice)
for (path, choice) in extra_dim_choices:
choice._name = ("model_extra_params",) + path
all_dimension_choices.append(choice)
for (path, choice) in fe_dim_choices:
choice._name = ("feature_engineer",) + path
all_dimension_choices.append(choice)
self.dimensions = all_dimension_choices
if self.module_name == "keras":
self.model_extra_params = link_choice_ids(
self.dummy_layers,
self.dummy_compile_params,
self.model_extra_params,
self.dimensions,
)