本文整理匯總了Python中hypothesis.strategies.randoms方法的典型用法代碼示例。如果您正苦於以下問題:Python strategies.randoms方法的具體用法?Python strategies.randoms怎麽用?Python strategies.randoms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hypothesis.strategies
的用法示例。
在下文中一共展示了strategies.randoms方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extended_textual_header
# 需要導入模塊: from hypothesis import strategies [as 別名]
# 或者: from hypothesis.strategies import randoms [as 別名]
def extended_textual_header(draw, count=-1, end_text_stanza_probability=None):
if count == -1:
if end_text_stanza_probability is not None:
raise ValueError("end_text_stanza_probability {} does not make sense when count is not {}"
.format(end_text_stanza_probability, count))
count = draw(integers(min_value=0, max_value=10))
headers = draw(lists(stanza(),
min_size=count,
max_size=count))
headers.append(END_TEXT_STANZA)
return headers
if count == 0:
return []
# For counted headers, the end-text stanza is optional. We generate it
# with the specified probability
if end_text_stanza_probability is None:
end_text_stanza_probability = 0.5
random = draw(randoms())
x = random.uniform(0.0, 1.0)
num_data_stanzas = count - 1 if x <= end_text_stanza_probability else count
headers = draw(lists(stanza(),
min_size=num_data_stanzas,
max_size=num_data_stanzas))
if num_data_stanzas == count - 1:
headers.append(END_TEXT_STANZA)
assert len(headers) == count
return headers
示例2: csrs
# 需要導入模塊: from hypothesis import strategies [as 別名]
# 或者: from hypothesis.strategies import randoms [as 別名]
def csrs(draw, nrows=None, ncols=None, nnz=None, values=None):
if ncols is None:
ncols = draw(st.integers(5, 100))
elif not isinstance(ncols, int):
ncols = draw(ncols)
if nrows is None:
nrows = draw(st.integers(5, 100))
elif not isinstance(nrows, int):
nrows = draw(nrows)
if nnz is None:
nnz = draw(st.integers(10, nrows * ncols // 2))
elif not isinstance(nnz, int):
nnz = draw(nnz)
coords = draw(nph.arrays(np.int32, nnz, elements=st.integers(0, nrows*ncols - 1), unique=True))
rows = np.mod(coords, nrows, dtype=np.int32)
cols = np.floor_divide(coords, nrows, dtype=np.int32)
if values is None:
values = draw(st.booleans())
if values:
rng = draw(st.randoms())
vals = np.array([rng.normalvariate(0, 1) for i in range(nnz)])
else:
vals = None
return matrix.CSR.from_coo(rows, cols, vals, (nrows, ncols))