本文整理匯總了Python中hmac.trans_5C方法的典型用法代碼示例。如果您正苦於以下問題:Python hmac.trans_5C方法的具體用法?Python hmac.trans_5C怎麽用?Python hmac.trans_5C使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hmac
的用法示例。
在下文中一共展示了hmac.trans_5C方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _getMAC
# 需要導入模塊: import hmac [as 別名]
# 或者: from hmac import trans_5C [as 別名]
def _getMAC(self, mac, key):
"""
Gets a 4-tuple representing the message authentication code.
(<hash module>, <inner hash value>, <outer hash value>,
<digest size>)
@type mac: L{bytes}
@param mac: a key mapping into macMap
@type key: L{bytes}
@param key: the MAC key.
@rtype: L{bytes}
@return: The MAC components.
"""
mod = self.macMap[mac]
if not mod:
return (None, b'', b'', 0)
# With stdlib we can only get attributes fron an instantiated object.
hashObject = mod()
digestSize = hashObject.digest_size
blockSize = hashObject.block_size
# Truncation here appears to contravene RFC 2104, section 2. However,
# implementing the hashing behavior prescribed by the RFC breaks
# interoperability with OpenSSH (at least version 5.5p1).
key = key[:digestSize] + (b'\x00' * (blockSize - digestSize))
i = key.translate(hmac.trans_36)
o = key.translate(hmac.trans_5C)
result = _MACParams((mod, i, o, digestSize))
result.key = key
return result
示例2: pbkdf2
# 需要導入模塊: import hmac [as 別名]
# 或者: from hmac import trans_5C [as 別名]
def pbkdf2(password, salt, iterations, dklen=0, digest=None):
"""
Implements PBKDF2 as defined in RFC 2898, section 5.2
HMAC+SHA256 is used as the default pseudo random function.
As of 2014, 100,000 iterations was the recommended default which took
100ms on a 2.7Ghz Intel i7 with an optimized implementation. This is
probably the bare minimum for security given 1000 iterations was
recommended in 2001. This code is very well optimized for CPython and
is about five times slower than OpenSSL's implementation. Look in
django.contrib.auth.hashers for the present default, it is lower than
the recommended 100,000 because of the performance difference between
this and an optimized implementation.
"""
assert iterations > 0
if not digest:
digest = hashlib.sha256
password = force_bytes(password)
salt = force_bytes(salt)
hlen = digest().digest_size
if not dklen:
dklen = hlen
if dklen > (2 ** 32 - 1) * hlen:
raise OverflowError('dklen too big')
l = -(-dklen // hlen)
r = dklen - (l - 1) * hlen
hex_format_string = "%%0%ix" % (hlen * 2)
inner, outer = digest(), digest()
if len(password) > inner.block_size:
password = digest(password).digest()
password += b'\x00' * (inner.block_size - len(password))
inner.update(password.translate(hmac.trans_36))
outer.update(password.translate(hmac.trans_5C))
def F(i):
u = salt + struct.pack(b'>I', i)
result = 0
for j in range(int(iterations)):
dig1, dig2 = inner.copy(), outer.copy()
dig1.update(u)
dig2.update(dig1.digest())
u = dig2.digest()
result ^= _bin_to_long(u)
return _long_to_bin(result, hex_format_string)
T = [F(x) for x in range(1, l)]
return b''.join(T) + F(l)[:r]
示例3: pbkdf2
# 需要導入模塊: import hmac [as 別名]
# 或者: from hmac import trans_5C [as 別名]
def pbkdf2(password, salt, iterations, dklen=0, digest=None):
"""
Implements PBKDF2 as defined in RFC 2898, section 5.2
HMAC+SHA256 is used as the default pseudo random function.
As of 2014, 100,000 iterations was the recommended default which took
100ms on a 2.7Ghz Intel i7 with an optimized implementation. This is
probably the bare minimum for security given 1000 iterations was
recommended in 2001. This code is very well optimized for CPython and
is about five times slower than OpenSSL's implementation. Look in
django.contrib.auth.hashers for the present default, it is lower than
the recommended 100,000 because of the performance difference between
this and an optimized implementation.
"""
assert iterations > 0
if not digest:
digest = hashlib.sha256
password = force_bytes(password)
salt = force_bytes(salt)
hlen = digest().digest_size
if not dklen:
dklen = hlen
if dklen > (2 ** 32 - 1) * hlen:
raise OverflowError('dklen too big')
L = -(-dklen // hlen)
r = dklen - (L - 1) * hlen
hex_format_string = "%%0%ix" % (hlen * 2)
inner, outer = digest(), digest()
if len(password) > inner.block_size:
password = digest(password).digest()
password += b'\x00' * (inner.block_size - len(password))
inner.update(password.translate(hmac.trans_36))
outer.update(password.translate(hmac.trans_5C))
def F(i):
u = salt + struct.pack(b'>I', i)
result = 0
for j in range(int(iterations)):
dig1, dig2 = inner.copy(), outer.copy()
dig1.update(u)
dig2.update(dig1.digest())
u = dig2.digest()
result ^= _bin_to_long(u)
return _long_to_bin(result, hex_format_string)
T = [F(x) for x in range(1, L)]
return b''.join(T) + F(L)[:r]
示例4: pbkdf2
# 需要導入模塊: import hmac [as 別名]
# 或者: from hmac import trans_5C [as 別名]
def pbkdf2(password, salt, iterations, dklen=0, digest=None):
"""
Implements PBKDF2 as defined in RFC 2898, section 5.2
HMAC+SHA256 is used as the default pseudo random function.
As of 2014, 100,000 iterations was the recommended default which took
100ms on a 2.7Ghz Intel i7 with an optimized implementation. This is
probably the bare minimum for security given 1000 iterations was
recommended in 2001. This code is very well optimized for CPython and
is about five times slower than OpenSSL's implementation.
"""
assert iterations > 0
if not digest:
digest = hashlib.sha1
password = bytes_(password)
salt = bytes_(salt)
hlen = digest().digest_size
if not dklen:
dklen = hlen
if dklen > (2 ** 32 - 1) * hlen:
raise OverflowError('dklen too big')
l = -(-dklen // hlen)
r = dklen - (l - 1) * hlen
hex_format_string = "%%0%ix" % (hlen * 2)
inner, outer = digest(), digest()
if len(password) > inner.block_size:
password = digest(password).digest()
password += b'\x00' * (inner.block_size - len(password))
inner.update(password.translate(hmac.trans_36))
outer.update(password.translate(hmac.trans_5C))
def F(i):
u = salt + struct.pack(b'>I', i)
result = 0
for j in xrange_(int(iterations)):
dig1, dig2 = inner.copy(), outer.copy()
dig1.update(u)
dig2.update(dig1.digest())
u = dig2.digest()
result ^= _bin_to_long(u)
return _long_to_bin(result, hex_format_string)
T = [F(x) for x in xrange_(1, l)]
return b''.join(T) + F(l)[:r]