當前位置: 首頁>>代碼示例>>Python>>正文


Python optim.build_optimizer方法代碼示例

本文整理匯總了Python中fairseq.optim.build_optimizer方法的典型用法代碼示例。如果您正苦於以下問題:Python optim.build_optimizer方法的具體用法?Python optim.build_optimizer怎麽用?Python optim.build_optimizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fairseq.optim的用法示例。


在下文中一共展示了optim.build_optimizer方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        # create FP32 copy of parameters and grads
        params = [p for p in self.model.parameters() if p.requires_grad]
        total_param_size = sum(p.data.numel() for p in params)
        self.fp32_params = params[0].new(0).float().new(total_param_size)
        offset = 0
        for p in params:
            numel = p.data.numel()
            self.fp32_params[offset:offset+numel].copy_(p.data.view(-1))
            offset += numel
        self.fp32_params = torch.nn.Parameter(self.fp32_params)
        self.fp32_params.grad = self.fp32_params.data.new(total_param_size)

        # create optimizer using the copied FP32 params
        self.optimizer = optim.build_optimizer(self.args, [self.fp32_params])
        self.lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:18,代碼來源:fp16_trainer.py

示例2: build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def build_optimizer(cls, args, params):
        """
        Args:
            args (argparse.Namespace): fairseq args
            params (iterable): iterable of parameters to optimize
        """
        flatten = not getattr(args, 'fp16_no_flatten_grads', False)
        if getattr(args, 'bf16', False):
            flatten = False  # mixed precision is faster on TPUs without flat grads
        fp32_params = cls.build_fp32_params(params, flatten=flatten)
        if flatten:
            fp32_optimizer = optim.build_optimizer(args, [fp32_params])
        else:
            fp32_optimizer = optim.build_optimizer(args, fp32_params)
        if flatten and not fp32_optimizer.supports_flat_params:
            raise RuntimeError(
                'chosen optimizer does not support flat params, '
                'please set --fp16-no-flatten-grads'
            )
        return cls(args, params, fp32_optimizer, fp32_params) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:22,代碼來源:fp16_optimizer.py

示例3: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        # create FP32 copy of parameters and grads
        params = [p for p in self.model.parameters() if p.requires_grad]
        total_param_size = sum(p.data.numel() for p in params)
        self.fp32_params = params[0].new(0).float().new(total_param_size)
        offset = 0
        for p in params:
            numel = p.data.numel()
            self.fp32_params[offset:offset+numel].copy_(p.data.view(-1))
            offset += numel
        self.fp32_params = torch.nn.Parameter(self.fp32_params)
        #self.fp32_params.grad = self.fp32_params.data.new(total_param_size)

        # create optimizer using the copied FP32 params
        self._optimizer = optim.build_optimizer(self.args, [self.fp32_params])
        self.lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:18,代碼來源:fp16_trainer.py

示例4: load_checkpoint

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def load_checkpoint(self, filename):
        """Load all training state from a checkpoint file."""
        extra_state, self._optim_history, last_optim_state = utils.load_model_state(
            filename, self.model, cuda_device=torch.cuda.current_device())

        if last_optim_state is not None:
            # rebuild optimizer after loading model, since params may have changed
            self.optimizer = optim.build_optimizer(self.args, self.model.parameters())
            self.lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer)

            # only reload optimizer and lr_scheduler if they match
            last_optim = self._optim_history[-1]
            if last_optim['criterion_name'] == self.criterion.__class__.__name__:
                self.lr_scheduler.load_state_dict(last_optim['lr_scheduler_state'])
                if last_optim['optimizer_name'] == self.optimizer.__class__.__name__:
                    self.optimizer.load_state_dict(last_optim_state)

            self._num_updates = last_optim['num_updates']

        return extra_state 
開發者ID:EdinburghNLP,項目名稱:XSum,代碼行數:22,代碼來源:trainer.py

示例5: build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def build_optimizer(cls, args, params):
        """
        Args:
            args (argparse.Namespace): fairseq args
            params (iterable): iterable of parameters to optimize
        """
        flatten = not getattr(args, 'fp16_no_flatten_grads', False)
        fp32_params = cls.build_fp32_params(params, flatten=flatten)
        if flatten:
            fp32_optimizer = optim.build_optimizer(args, [fp32_params])
        else:
            fp32_optimizer = optim.build_optimizer(args, fp32_params)
        if flatten and not fp32_optimizer.supports_flat_params:
            raise RuntimeError(
                'chosen optimizer does not support flat params, '
                'please set --fp16-no-flatten-grads'
            )
        return cls(args, params, fp32_optimizer, fp32_params) 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:20,代碼來源:fp16_optimizer.py

示例6: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        params = list(filter(lambda p: p.requires_grad, self.model.parameters()))
        if self.args.fp16:
            if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
                print('| WARNING: your device does NOT support faster training with --fp16, '
                      'please switch to FP32 which is likely to be faster')
            if self.args.memory_efficient_fp16:
                self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(self.args, params)
            else:
                self._optimizer = optim.FP16Optimizer.build_optimizer(self.args, params)
        else:
            if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
                print('| NOTICE: your device may support faster training with --fp16')
            self._optimizer = optim.build_optimizer(self.args, params)

        # We should initialize the learning rate scheduler immediately after
        # building the optimizer, so that the initial learning rate is set.
        self._lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer) 
開發者ID:kakaobrain,項目名稱:helo_word,代碼行數:20,代碼來源:trainer.py

示例7: build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def build_optimizer(cls, args, params):
        """
        Args:
            args (argparse.Namespace): fairseq args
            params (iterable): iterable of parameters to optimize
        """
        # create FP32 copy of parameters and grads
        total_param_size = sum(p.data.numel() for p in params)
        fp32_params = params[0].new(0).float().new(total_param_size)
        offset = 0
        for p in params:
            numel = p.data.numel()
            fp32_params[offset:offset+numel].copy_(p.data.view(-1))
            offset += numel
        fp32_params = torch.nn.Parameter(fp32_params)
        fp32_params.grad = fp32_params.data.new(total_param_size)

        fp32_optimizer = optim.build_optimizer(args, [fp32_params])
        return cls(args, params, fp32_optimizer, fp32_params) 
開發者ID:kakaobrain,項目名稱:helo_word,代碼行數:21,代碼來源:fp16_optimizer.py

示例8: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        self.optimizer = optim.build_optimizer(self.args, self.model.parameters())
        self.lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:5,代碼來源:trainer.py

示例9: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        params = list(
            filter(
                lambda p: p.requires_grad,
                chain(self.model.parameters(), self.criterion.parameters()),
            )
        )

        if self.args.fp16 or self.args.bf16:
            if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
                logger.info(
                    "NOTE: your device does NOT support faster training with --fp16, "
                    "please switch to FP32 which is likely to be faster"
                )
            if self.args.memory_efficient_fp16 or self.args.memory_efficient_bf16:
                self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
                    self.args, params
                )
            else:
                self._optimizer = optim.FP16Optimizer.build_optimizer(self.args, params)
        else:
            if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
                logger.info("NOTE: your device may support faster training with --fp16")
            self._optimizer = optim.build_optimizer(self.args, params)

        if self.args.use_bmuf:
            self._optimizer = optim.FairseqBMUF(self.args, self._optimizer)

        # We should initialize the learning rate scheduler immediately after
        # building the optimizer, so that the initial learning rate is set.
        self._lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer)
        self._lr_scheduler.step_update(0) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:34,代碼來源:trainer.py

示例10: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self, model):
        if self.args.fp16:
            if torch.cuda.get_device_capability(0)[0] < 7:
                print(
                    "| WARNING: your device does NOT support faster training "
                    "with --fp16, please switch to FP32 which is likely to be"
                    " faster"
                )
            params = list(filter(lambda p: p.requires_grad, model.parameters()))
            self._optimizer = optim.FP16Optimizer.build_optimizer(self.args, params)
        else:
            if torch.cuda.get_device_capability(0)[0] >= 7:
                print("| NOTICE: your device may support faster training with --fp16")
            self._optimizer = optim.build_optimizer(self.args, model.parameters())
        return self._optimizer 
開發者ID:pytorch,項目名稱:translate,代碼行數:17,代碼來源:dual_learning_task.py

示例11: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        self._optimizer = optim.build_optimizer(self.args, self.model.parameters())
        self.lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self._optimizer) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:5,代碼來源:trainer.py

示例12: __init__

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def __init__(self, args, model, criterion):

        if not torch.cuda.is_available():
            raise NotImplementedError('Training on CPU is not supported')

        self.args = args

        # copy model and criterion to current device
        self.model = model.cuda()
        self.criterion = criterion.cuda()

        # initialize optimizer and LR scheduler
        self.optimizer = optim.build_optimizer(self.args, self.model.parameters())
        self.lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer)

        # initialize meters
        self.meters = OrderedDict()
        self.meters['train_loss'] = AverageMeter()
        self.meters['train_nll_loss'] = AverageMeter()
        self.meters['valid_loss'] = AverageMeter()
        self.meters['valid_nll_loss'] = AverageMeter()
        self.meters['wps'] = TimeMeter()       # words per second
        self.meters['ups'] = TimeMeter()       # updates per second
        self.meters['wpb'] = AverageMeter()    # words per batch
        self.meters['bsz'] = AverageMeter()    # sentences per batch
        self.meters['gnorm'] = AverageMeter()  # gradient norm
        self.meters['clip'] = AverageMeter()   # % of updates clipped
        self.meters['oom'] = AverageMeter()    # out of memory

        self._max_bsz_seen = 0
        self._num_updates = 0 
開發者ID:EdinburghNLP,項目名稱:XSum,代碼行數:33,代碼來源:trainer.py

示例13: _build_optimizer

# 需要導入模塊: from fairseq import optim [as 別名]
# 或者: from fairseq.optim import build_optimizer [as 別名]
def _build_optimizer(self):
        params = list(
            filter(
                lambda p: p.requires_grad,
                chain(self.model.parameters(), self.criterion.parameters()),
            )
        )
        if self.args.fp16:
            if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
                logger.info(
                    "NOTE: your device does NOT support faster training with --fp16, "
                    "please switch to FP32 which is likely to be faster"
                )
            if self.args.memory_efficient_fp16:
                self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
                    self.args, params
                )
            else:
                self._optimizer = optim.FP16Optimizer.build_optimizer(self.args, params)
        else:
            if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
                logger.info("NOTE: your device may support faster training with --fp16")
            self._optimizer = optim.build_optimizer(self.args, params)

        if self.args.use_bmuf:
            self._optimizer = optim.FairseqBMUF(self.args, self._optimizer)

        # We should initialize the learning rate scheduler immediately after
        # building the optimizer, so that the initial learning rate is set.
        self._lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer)
        self._lr_scheduler.step_update(0) 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:33,代碼來源:trainer.py


注:本文中的fairseq.optim.build_optimizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。