當前位置: 首頁>>代碼示例>>Python>>正文


Python visualization.trace_html方法代碼示例

本文整理匯總了Python中dragnn.python.visualization.trace_html方法的典型用法代碼示例。如果您正苦於以下問題:Python visualization.trace_html方法的具體用法?Python visualization.trace_html怎麽用?Python visualization.trace_html使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.visualization的用法示例。


在下文中一共展示了visualization.trace_html方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testMasterSpecJson

# 需要導入模塊: from dragnn.python import visualization [as 別名]
# 或者: from dragnn.python.visualization import trace_html [as 別名]
def testMasterSpecJson(self):
    visualization.trace_html(
        _get_trace_proto_string(), master_spec=_get_master_spec())
    widget = visualization.InteractiveVisualization()
    widget.initial_html()
    widget.show_trace(_get_trace_proto_string(), master_spec=_get_master_spec()) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:8,代碼來源:visualization_test.py

示例2: main

# 需要導入模塊: from dragnn.python import visualization [as 別名]
# 或者: from dragnn.python.visualization import trace_html [as 別名]
def main(argv):
  del argv  # unused
  # Constructs lexical resources for SyntaxNet in the given resource path, from
  # the training data.
  lexicon.build_lexicon(
      lexicon_dir,
      training_sentence,
      training_corpus_format='sentence-prototext')

  # Construct the ComponentSpec for tagging. This is a simple left-to-right RNN
  # sequence tagger.
  tagger = spec_builder.ComponentSpecBuilder('tagger')
  tagger.set_network_unit(name='FeedForwardNetwork', hidden_layer_sizes='256')
  tagger.set_transition_system(name='tagger')
  tagger.add_fixed_feature(name='words', fml='input.word', embedding_dim=64)
  tagger.add_rnn_link(embedding_dim=-1)
  tagger.fill_from_resources(lexicon_dir)

  master_spec = spec_pb2.MasterSpec()
  master_spec.component.extend([tagger.spec])

  hyperparam_config = spec_pb2.GridPoint()

  # Build the TensorFlow graph.
  graph = tf.Graph()
  with graph.as_default():
    builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)

    target = spec_pb2.TrainTarget()
    target.name = 'all'
    target.unroll_using_oracle.extend([True])
    dry_run = builder.add_training_from_config(target, trace_only=True)

  # Read in serialized protos from training data.
  sentence = sentence_pb2.Sentence()
  text_format.Merge(open(training_sentence).read(), sentence)
  training_set = [sentence.SerializeToString()]

  with tf.Session(graph=graph) as sess:
    # Make sure to re-initialize all underlying state.
    sess.run(tf.initialize_all_variables())
    traces = sess.run(
        dry_run['traces'], feed_dict={dry_run['input_batch']: training_set})

  with open('dragnn_tutorial_1.html', 'w') as f:
    f.write(visualization.trace_html(traces[0], height='300px').encode('utf-8')) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:48,代碼來源:tutorial_1.py


注:本文中的dragnn.python.visualization.trace_html方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。