當前位置: 首頁>>代碼示例>>Python>>正文


Python network_units.NamedTensor方法代碼示例

本文整理匯總了Python中dragnn.python.network_units.NamedTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python network_units.NamedTensor方法的具體用法?Python network_units.NamedTensor怎麽用?Python network_units.NamedTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.network_units的用法示例。


在下文中一共展示了network_units.NamedTensor方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testCanCreate

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def testCanCreate(self):
    """Tests that create() works on a good spec."""
    with tf.Graph().as_default(), self.test_session():
      master = MockMaster()
      component = MockComponent(master, _make_biaffine_spec())

      with tf.variable_scope(component.name, reuse=None):
        component.network = biaffine_units.BiaffineDigraphNetwork(component)

      with tf.variable_scope(component.name, reuse=True):
        sources = network_units.NamedTensor(
            tf.zeros([_BATCH_SIZE * _NUM_TOKENS, _TOKEN_DIM]), 'sources')
        targets = network_units.NamedTensor(
            tf.zeros([_BATCH_SIZE * _NUM_TOKENS, _TOKEN_DIM]), 'targets')

        # No assertions on the result, just don't crash.
        component.network.create(
            fixed_embeddings=[],
            linked_embeddings=[sources, targets],
            context_tensor_arrays=None,
            attention_tensor=None,
            during_training=True,
            stride=_BATCH_SIZE) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:25,代碼來源:biaffine_units_test.py

示例2: fetch_linked_embedding

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def fetch_linked_embedding(comp, network_states, feature_spec):
  """Looks up linked embeddings in other components.

  Args:
    comp: ComponentBuilder object with respect to which the feature is to be
        fetched
    network_states: dictionary of NetworkState objects
    feature_spec: FeatureSpec proto for the linked feature to be looked up

  Returns:
    NamedTensor containing the linked feature tensor

  Raises:
    NotImplementedError: if a linked feature with source translator other than
        'identity' is configured.
    RuntimeError: if a recurrent linked feature is configured.
  """
  if feature_spec.source_translator != 'identity':
    raise NotImplementedError(feature_spec.source_translator)
  if feature_spec.source_component == comp.name:
    raise RuntimeError(
        'Recurrent linked features are not supported in bulk extraction.')
  tf.logging.info('[%s] Adding linked feature "%s"', comp.name,
                  feature_spec.name)
  source = comp.master.lookup_component[feature_spec.source_component]

  return network_units.NamedTensor(
      network_states[source.name].activations[
          feature_spec.source_layer].bulk_tensor,
      feature_spec.name) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:bulk_component.py

示例3: fetch_differentiable_fixed_embeddings

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def fetch_differentiable_fixed_embeddings(comp, state, stride):
  """Looks up fixed features with separate, differentiable, embedding lookup.

  Args:
    comp: Component whose fixed features we wish to look up.
    state: live MasterState object for the component.
    stride: Tensor containing current batch * beam size.

  Returns:
    state handle: updated state handle to be used after this call
    fixed_embeddings: list of NamedTensor objects
  """
  _validate_embedded_fixed_features(comp)
  num_channels = len(comp.spec.fixed_feature)
  if not num_channels:
    return state.handle, []

  state.handle, indices, ids, weights, num_steps = (
      dragnn_ops.bulk_fixed_features(
          state.handle, component=comp.name, num_channels=num_channels))
  fixed_embeddings = []
  for channel, feature_spec in enumerate(comp.spec.fixed_feature):
    differentiable_or_constant = ('constant' if feature_spec.is_constant else
                                  'differentiable')
    tf.logging.info('[%s] Adding %s fixed feature "%s"', comp.name,
                    differentiable_or_constant, feature_spec.name)
    size = stride * num_steps * feature_spec.size
    fixed_embedding = network_units.embedding_lookup(
        comp.get_variable(network_units.fixed_embeddings_name(channel)),
        indices[channel], ids[channel], weights[channel], size)
    if feature_spec.is_constant:
      fixed_embedding = tf.stop_gradient(fixed_embedding)
    fixed_embeddings.append(
        network_units.NamedTensor(fixed_embedding, feature_spec.name))

  return state.handle, fixed_embeddings 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:38,代碼來源:bulk_component.py

示例4: fetch_fast_fixed_embeddings

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def fetch_fast_fixed_embeddings(comp, state):
  """Looks up fixed features with fast, non-differentiable, op.

  Since BulkFixedEmbeddings is non-differentiable with respect to the
  embeddings, the idea is to call this function only when the graph is
  not being used for training.

  Args:
    comp: Component whose fixed features we wish to look up.
    state: live MasterState object for the component.

  Returns:
    state handle: updated state handle to be used after this call
    fixed_embeddings: list of NamedTensor objects
  """
  _validate_embedded_fixed_features(comp)
  num_channels = len(comp.spec.fixed_feature)
  if not num_channels:
    return state.handle, []
  tf.logging.info('[%s] Adding %d fast fixed features', comp.name, num_channels)

  state.handle, bulk_embeddings, _ = dragnn_ops.bulk_fixed_embeddings(
      state.handle, [
          comp.get_variable(network_units.fixed_embeddings_name(c))
          for c in range(num_channels)
      ],
      component=comp.name)

  bulk_embeddings = network_units.NamedTensor(bulk_embeddings,
                                              'bulk-%s-fixed-features' %
                                              comp.name)
  return state.handle, [bulk_embeddings] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:34,代碼來源:bulk_component.py

示例5: extract_fixed_feature_ids

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def extract_fixed_feature_ids(comp, state, stride):
  """Extracts fixed feature IDs.

  Args:
    comp: Component whose fixed feature IDs we wish to extract.
    state: Live MasterState object for the component.
    stride: Tensor containing current batch * beam size.

  Returns:
    state handle: Updated state handle to be used after this call.
    ids: List of [stride * num_steps, 1] feature IDs per channel.  Missing IDs
         (e.g., due to batch padding) are set to -1.
  """
  num_channels = len(comp.spec.fixed_feature)
  if not num_channels:
    return state.handle, []

  for feature_spec in comp.spec.fixed_feature:
    check.Eq(feature_spec.size, 1, 'All features must have size=1')
    check.Lt(feature_spec.embedding_dim, 0, 'All features must be non-embedded')

  state.handle, indices, ids, _, num_steps = dragnn_ops.bulk_fixed_features(
      state.handle, component=comp.name, num_channels=num_channels)
  size = stride * num_steps

  fixed_ids = []
  for channel, feature_spec in enumerate(comp.spec.fixed_feature):
    tf.logging.info('[%s] Adding fixed feature IDs "%s"', comp.name,
                    feature_spec.name)

    # The +1 and -1 increments ensure that missing IDs default to -1.
    #
    # TODO(googleuser): This formula breaks if multiple IDs are extracted at some
    # step.  Try using tf.unique() to enforce the unique-IDS precondition.
    sums = tf.unsorted_segment_sum(ids[channel] + 1, indices[channel], size) - 1
    sums = tf.expand_dims(sums, axis=1)
    fixed_ids.append(network_units.NamedTensor(sums, feature_spec.name, dim=1))
  return state.handle, fixed_ids 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:40,代碼來源:bulk_component.py

示例6: testConstantPadding

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def testConstantPadding(self):
    with tf.Graph().as_default(), self.test_session():
      with tf.variable_scope('test_scope'):
        network = network_units.GatherNetwork(self._component)

      # Construct a batch of two items with 3 and 2 steps, respectively.
      indices = tf.constant([[1], [2], [0],  # item 1
                             [-1], [0], [-1]],  # item 2
                            dtype=tf.int64)
      features = tf.constant([[1.0, 1.5], [2.0, 2.5], [3.0, 3.5],  # item 1
                              [4.0, 4.5], [5.0, 5.5], [6.0, 6.5]],  # item 2
                             dtype=tf.float32)

      fixed_embeddings = []
      linked_embeddings = [
          network_units.NamedTensor(indices, 'indices', 1),
          network_units.NamedTensor(features, 'features', 2)
      ]

      with tf.variable_scope('test_scope', reuse=True):
        outputs = network.create(fixed_embeddings, linked_embeddings, None,
                                 None, True, 2)
      gathered = outputs[0]

      # Zeros will be substituted for index -1.
      self.assertAllEqual(gathered.eval(),
                          [[2.0, 2.5],  # gathered from 1
                           [3.0, 3.5],  # gathered from 2
                           [1.0, 1.5],  # gathered from 0
                           [0.0, 0.0],  # gathered from -1
                           [4.0, 4.5],  # gathered from 0
                           [0.0, 0.0]])  # gathered from -1 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:34,代碼來源:network_units_test.py

示例7: testTrainablePadding

# 需要導入模塊: from dragnn.python import network_units [as 別名]
# 或者: from dragnn.python.network_units import NamedTensor [as 別名]
def testTrainablePadding(self):
    self._component.spec.network_unit.parameters['trainable_padding'] = 'true'
    with tf.Graph().as_default(), self.test_session():
      with tf.variable_scope('test_scope'):
        network = network_units.GatherNetwork(self._component)

      # Construct a batch of two items with 3 and 2 steps, respectively.
      indices = tf.constant([[1], [2], [0],  # item 1
                             [-1], [0], [-1]],  # item 2
                            dtype=tf.int64)
      features = tf.constant([[1.0, 1.5], [2.0, 2.5], [3.0, 3.5],  # item 1
                              [4.0, 4.5], [5.0, 5.5], [6.0, 6.5]],  # item 2
                             dtype=tf.float32)

      fixed_embeddings = []
      linked_embeddings = [
          network_units.NamedTensor(indices, 'indices', 1),
          network_units.NamedTensor(features, 'features', 2)
      ]

      with tf.variable_scope('test_scope', reuse=True):
        outputs = network.create(fixed_embeddings, linked_embeddings, None,
                                 None, True, 2)
      gathered = outputs[0]

      # Ensure that the padding variable is initialized.
      tf.global_variables_initializer().run()

      # Randomly-initialized padding will be substituted for index -1.
      self.assertAllEqual(gathered[0].eval(), [2.0, 2.5])  # gathered from 1
      self.assertAllEqual(gathered[1].eval(), [3.0, 3.5])  # gathered from 2
      self.assertAllEqual(gathered[2].eval(), [1.0, 1.5])  # gathered from 0
      tf.logging.info('padding = %s', gathered[3].eval())  # gathered from -1
      self.assertAllEqual(gathered[4].eval(), [4.0, 4.5])  # gathered from 0
      tf.logging.info('padding = %s', gathered[5].eval())  # gathered from -1

      # Though random, the padding must identical.
      self.assertAllEqual(gathered[3].eval(), gathered[5].eval()) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:40,代碼來源:network_units_test.py


注:本文中的dragnn.python.network_units.NamedTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。