當前位置: 首頁>>代碼示例>>Python>>正文


Python data_utils.read_names方法代碼示例

本文整理匯總了Python中data_utils.read_names方法的典型用法代碼示例。如果您正苦於以下問題:Python data_utils.read_names方法的具體用法?Python data_utils.read_names怎麽用?Python data_utils.read_names使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data_utils的用法示例。


在下文中一共展示了data_utils.read_names方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import read_names [as 別名]
def train(data_dir, checkpoint_path, config):
    """Trains the model with the given data

    Args:
        data_dir: path to the data for the model (see data_utils for data
            format)
        checkpoint_path: the path to save the trained model checkpoints
        config: one of the above configs that specify the model and how it
            should be run and trained
    Returns:
        None
    """
    # Prepare Name data.
    print("Reading Name data in %s" % data_dir)
    names, counts = data_utils.read_names(data_dir)

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.random_uniform_initializer(-config.init_scale,
                                                    config.init_scale)
        with tf.variable_scope("model", reuse=None, initializer=initializer):
            m = NamignizerModel(is_training=True, config=config)

        tf.global_variables_initializer().run()

        for i in range(config.max_max_epoch):
            lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
            m.assign_lr(session, config.learning_rate * lr_decay)

            print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
            train_perplexity = run_epoch(session, m, names, counts, config.epoch_size, m.train_op,
                                         verbose=True)
            print("Epoch: %d Train Perplexity: %.3f" %
                  (i + 1, train_perplexity))

            m.saver.save(session, checkpoint_path, global_step=i) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:37,代碼來源:names.py

示例2: train

# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import read_names [as 別名]
def train(data_dir, checkpoint_path, config):
    """Trains the model with the given data

    Args:
        data_dir: path to the data for the model (see data_utils for data
            format)
        checkpoint_path: the path to save the trained model checkpoints
        config: one of the above configs that specify the model and how it
            should be run and trained
    Returns:
        None
    """
    # Prepare Name data.
    print("Reading Name data in %s" % data_dir)
    names, counts = data_utils.read_names(data_dir)

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.random_uniform_initializer(-config.init_scale,
                                                    config.init_scale)
        with tf.variable_scope("model", reuse=None, initializer=initializer):
            m = NamignizerModel(is_training=True, config=config)

        tf.initialize_all_variables().run()

        for i in range(config.max_max_epoch):
            lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
            m.assign_lr(session, config.learning_rate * lr_decay)

            print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
            train_perplexity = run_epoch(session, m, names, counts, config.epoch_size, m.train_op,
                                         verbose=True)
            print("Epoch: %d Train Perplexity: %.3f" %
                  (i + 1, train_perplexity))

            m.saver.save(session, checkpoint_path, global_step=i) 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:37,代碼來源:names.py


注:本文中的data_utils.read_names方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。